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Abstract

Our current understanding of gravity is limited by the challenge of probing extremely high energy scales,
which are far beyond the reach of terrestrial experiments. Theoretical frameworks such as string theory and
loop quantum gravity remain largely untested, as building a particle collider capable of accessing these scales
would require structures on the order of the solar system. However, the early universe—particularly during
the inflationary epoch—naturally operated at such energy scales, offering a unique observational window into
high-energy physics.

Inflation is the highest-energy process known to have occurred in the history of the universe, making it a
compelling setting to investigate particle production, field interactions, and signatures of new physics. Crucially,
these phenomena can leave observable imprints in the cosmic microwave background (CMB), particularly in
the form of primordial correlation functions.

This thesis explores how particles produced during inflation—via gravitational effects or interactions—affect
cosmological observables such as the power spectrum, bispectrum, and trispectrum. We employ tools from quan-
tum field theory in curved spacetime, including Bogoliubov transformations to understand particle production
and the in-in formalism, to compute these correlation functions and interpret their physical implications. Special
attention is given to non-Gaussian features, which serve as powerful diagnostics of field content and interactions
during inflation.

By treating the early universe as a natural high-energy particle detector, we explore the connection between
the theoretical machinery of quantum field theory with the observational data encoded in the CMB. The
resulting framework enables us to test inflationary models and search for evidence of new physics beyond the
Standard Model—buried in the statistical patterns of the sky.
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Chapter 1

Introduction and Motivation

Who are we? Where did we come from? What’s the purpose of life? These timeless questions have haunted
ancient philosophers for centuries—usually while they stared into campfires or scribbled on scrolls with dramatic
sighs. While answers to some of these remain elusive, today we tackle a slightly more manageable one from the
cosmic mystery grab bag: Where did everything come from?

1 Introduction

One of the biggest questions in all of science is the origin of structure in the Universe. What

created everything that we see around us? An important clue lies in the fact that the structures in

the Universe aren’t distributed randomly, but displays large-scale correlations. These correlations

are a fossil record of the early universe, and by measuring them we hope to uncover how the

cosmological perturbations formed and evolved.

Our earliest snapshot of the large-scale structure of the Universe comes from measurements

of the cosmic microwave background (CMB), whose intensity varies as a function of position on

the sky. These CMB anisotropies reflect variations in the matter density at the time when the

first atoms formed, about 380 000 years after the Big Bang. Over time, the density fluctuations

grew, until clouds of gas started to collapse into stars and galaxies. In principle, the distribution

of the collapsed objects still contains correlations that carry information about the primordial

universe. Extracting this information is a fundamental challenge of modern cosmology.

Inflation Reheating CMB LSS

time

Figure 1: The correlations in late-time cosmological observables—like the distribution of the large-scale

structure (LSS) or the anisotropies of the cosmic microwave background (CMB)—can be traced back in

time to primordial correlations on the “reheating surface” (marking the initial surface of the hot Big Bang

universe or the final surface at the end of inflation). Imprinted in these correlations is the physics of the

inflationary era. (Figure adapted from [1].)

We understand the late-time evolution of the Universe well enough to trace it back until the

beginning of the hot Big Bang. While doing this, cosmologists recently discovered a remarkable

fact: the initial fluctuations which ultimately led to the large-scale structure of the Universe must

have been created before the hot Big Bang. The conventional Big Bang was therefore not the

beginning of time, but the end of an earlier high-energy period, and the primordial fluctuations

were created in this pre-Big Bang phase. But, how exactly did this happen? The challenge is to

extract this information from the pattern of correlations in the late universe.

We have some evidence for a period of inflationary expansion before the hot Big Bang. The

details of inflation are still uncertain, but it provides an elegant mechanism to convert quantum

4

Figure 1.1: Correlations in late-time cosmological observables—like LSS distribution or CMB
anisotropies—originate from primordial correlations on the reheating surface, which marks the end of infla-
tion and the start of the hot Big Bang. These correlations carry imprints of inflationary physics. Figure
adapted from [1].)

Cosmology is the branch of science that attempts to answer this question, among others. In this report,
our focus will remain on inflation and what it could teach us about our universe. The birth of the universe
and the subsequent evolution that led to the formation of large-scale structures is one of the most fundamental
and profound questions in cosmology. Our current understanding of Large Scale structure formation is based
on cosmological perturbation theory. It gives us a set of differential equation which govern the linear time
evolution of growth of structure. However, as for any system which is evolved by a set of differential equation
from the past to infinite future, one needs the set of initial conditions. The initial conditions set by quantum
fluctuations which took place during inflation and they obey gaussian probability distribution.

It is not the only problem that Inflation solves, but the motivation for considering inflation arises naturally
when we consider the framework that Hot Big Bang Cosmology provides. It had many problems, such as[2]

• Horizon Problem: Why does the Cosmic Microwave Background Radiation resemble the Black Body
radiation emitted by object at thermal equilibrium at T = 2.7K, if the distant patches in the sky were
not in causal contact. Which mechanism did the universe use to establish thermal equilibrium?

1
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Figure 1.2: Two views of the horizon problem. Left: Conformal diagram showing light from two regions of the
sky (separated by ∼ 2◦) reaching the observer today. Their past light cones hit the initial singularity before
intersecting, implying no causal contact. Right: Spatial slice at constant time illustrating the same: regions
lie outside each other’s particle horizons. Yet, they exhibit identical CMB temperatures.

• Flatness problem: How the universe could have such a precise density of matter and energy to be so close
to flat. It could be thought of as fine tuning problem in cosmology.

• Monopole problem: Exotic unification models like GUT predict the existence of magnetic monopole and
yet none has been observed so far.

These problems among others can be solved by assuming an exponentially expanding phase preceding the Hot
big bang model. Inflation makes it possible for the entire observable universe to have had been in causal contact
in the past so that thermal equilibrium could be established which is what the Horizon problem is all about.
The rapid expansion also flattens out any spatial curvature as well as dilutes the abundance of unwanted relic
such as magnetic monopole.

Another interesting idea of interest in cosmology is that of Gravitational Particle Production (GPP), which
suggests a possible mechanism for producing matter in the Early Universe. GPP is the creation of particles
from vacuum in the expanding universe (similar to how Black Holes radiate) entirely due to their gravitational
interaction. The idea is somewhat similar to production of electron and positron in the presence of strong
electric field[3] with gravitational field replaced by strong electric field.

The vacua of quantum fields in the early universe are among the most fascinating states to study, primarily
because the definition of the vacuum — understood as a state with no particles — evolves over time due
to gravitational dynamics. This idea is analogous to a forced harmonic oscillator in quantum mechanics. If
an impulse is applied to a harmonic oscillator in its ground state, it becomes excited to higher energy states,
exhibiting oscillatory behavior. In the context of inflationary cosmology, this implies that a state initially devoid
of particles becomes populated with them due to gravitational effects. When quantum fields are interpreted as
harmonic oscillators in momentum space, their behavior in curved spacetime resembles that of a forced harmonic
oscillator. This is the idea behind gravitational production of particles during inflation. In the adiabatic limit,
i.e. slowly expanding universe scenario, we observe no particle production[4].

One of the most beautiful consequences of considering Inflation is that it is one of the highest-energy
phenomena ever to take place in the universe. The highest energy scale that one can reach at the Large Hadron
Collider is in the few TeV range, whereas inflation took place at the energy scale of 1014 GeV. Inflation not only
solves a few problems but also introduces many more. The most fundamental being the observational effects
that one can measure.

The scientific method demands that we experimentally recreate the phenomenon over and over again to
observe the same effect and ensure that the process being studied is not the result of statistical fluctuations.
However, the birth of the universe was a phenomenon that cannot be recreated in a lab. Therefore, it is natural
to ask how we can infer the high-energy processes or GPP that took place during inflation. Because, inflation
was very high energy phenomenon, which means that during this phase, particles lighter than inflationary
expansion scale could have been produced. However, since, we have no direct way of accessing the inflationary
era. How do we recognize the presence of these new particles during inflation from CMB? More importantly, why
isn’t the structures in the universe randomly distributed? One such resolution lies in studying the cosmological
correlation functions and use them to infer particle production signatures and other events which took place
during inflation from the CMB. Correlation functions in field theories are expectation values of field operator
between vacuum states.

⟨OOX⟩ = ⟨0|OOX |0⟩
These correlations are like the fossil record of the universe which could help us understand the origin and
evolution of cosmological perturbation.

2



Figure 1.3: From quantum seeds to cosmic structure: Primordial fluctuations, seeded by quantum fluctuations
during inflation, were amplified by gravity and shaped by plasma physics into the anisotropies seen in the CMB.
Over time, gravitational clustering transformed these fluctuations into the large-scale structure we observe
today, including galaxies and galaxy clusters.

It is clear that studying correlation functions and CMB holds the key to understanding much of the early
universe. We quickly motivate why one should consider studying this from the perspective of CMB Physics. The
farthest we can look back in time is the surface of last scattering, where the CMB was released. The CMB is not
isotropic but has small anisotropies which varies with position.

time

density

fluctuations

decay decay

particle
production

Figure 1.4: A schematic diagram of how particle produc-
tion during inflation lead to the development of density
fluctuation in the early universe.

These anisotropies should not have existed if the early
universe had been in perfect thermal equilibrium; in-
stead, they reflect initial quantum fluctuations in den-
sity, which were later amplified by gravitational in-
stability. These fluctuations correspond to variations
in matter density at the time when the first atoms
formed. Over time, collisionless dark matter began
to accumulate, creating gravitational potential wells
into which baryonic matter fell, eventually leading
to the formation of large-scale structures. This sug-
gests that a natural place to start investigating the
origin of large-scale correlations is with the correla-
tions sourced by quantum fluctuations during infla-
tion. These quantum fluctuation set the initial con-
dition for each perturbation mode during radiation
dominated era whose evolution lead to the large scale
structure formation that we observe today.

1.1 Goals and Structure of This
Thesis

In this work, we explore how the correlation functions generated during inflation can be used to study particle
production, field interactions, and possible signals of new physics. We begin by reviewing the statistical
framework of cosmological fluctuations and the in-in formalism for calculating correlation functions in time-
dependent spacetimes. We then study quantum field theory in curved backgrounds, focusing on the observer-
dependence of vacuum states and the mechanics of particle production.

Subsequent chapters investigate how these phenomena manifest in the CMB, with emphasis on non-Gaussian
features that encode rich information about the inflationary era. The tools developed here bridge the gap
between high-energy particle physics and observational cosmology, offering a way to test fundamental physics
through the lens of the sky.

Ultimately, this thesis aims to explore the growing body of work that treats the early universe as a cosmic
detector—an arena where the deepest laws of nature may have left behind observable signatures.

3



Chapter 2

Statistics of Fluctuations

Figure 2.1: Visualization of a 2D Gaussian random field
representing fluctuations in an early-universe-like set-
ting. Each bump corresponds to a local deviation from
the average — a ”quantum wrinkle” in the primordial
fabric. While the bumps appear random, their underly-
ing pattern is governed by statistical correlations, which
we study through tools like the power spectrum and cor-
relation functions.

Inflationary cosmology provides a natural mechanism
for the generation of primordial density perturbations
from quantum fluctuations of fields in a rapidly ex-
panding background. These fluctuations serve as the
initial seeds for the cosmic microwave background
(CMB) anisotropies and the large-scale structure we
observe today. A central aspect of modern cos-
mology is to understand the statistical properties of
these fluctuations and extract information about the
physics of the early universe from their imprints.

In the simplest models, these primordial fluctua-
tions are predicted to be nearly Gaussian and scale-
invariant. This prediction arises from the assump-
tion that quantum fields begin in the Bunch-Davies
vacuum—a vacuum state which coincides with the
Minkowski vacuum at short distances and smoothly
evolves with the background spacetime. Each Fourier
mode of the field behaves as an independent quantum
harmonic oscillator, and the ground state wavefunc-
tion for such a system is a Gaussian. Consequently,
the probability distribution for the primordial fluctu-
ations is also Gaussian to leading order.

In this chapter, we aim to understand where this
Gaussianity comes from. Specifically, we ask: What
is the probability distribution for a single perturbation
mode during inflation? To answer this, we work in the Schrödinger picture and treat each mode as a time-
dependent quantum harmonic oscillator.

H =
p2

2m
+ V (x)

In Quantum Mechanics, we start with a wave function, which is defined as

ψ(x) ≡ ⟨x|ψ⟩ with x̂ |x⟩ = x |x⟩

and, we have (setting ℏ = 1)
[x̂, p̂] = i

The schrodinger equation (with flat metric) becomes:

i
∂

∂t
ψ = −∂

2ψ

∂x2
+ V (x)ψ

Similarly, in quantum field theory, the Hamiltonian for a scalar field is given as:

H =
1

2
Π2 +

1

2
ω2ϕ2

We begin by considering the eigenstate of the quantum field operator. Φ̂:

Φ̂(t, x) |ϕ⟩ = ϕ(t, x) |ϕ⟩ (2.1)
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where ϕ(t, x) is the spatial profile of the field at a given time t. We have

ψ[ϕ(t, x)] ≡ ⟨ϕ|ψ⟩ with Φ̂(t, x) |ϕ⟩ = ϕ(t, x) |ϕ⟩

and,
[Φ̂(x), Π̂(y)] = iδ(x− y)

The schrodinger equation then becomes:[5]

i
∂

∂η
ψ[ϕ(t, x)] =

(
−1

2

∂2

∂ϕ2
+

1

2
ω2ϕ

)
ψ[ϕ(t, x)]

This looks like the Schroedinger equation for harmonic oscillator (with m = 1) and thus we know that the
wavefunction for ground state is gaussian i.e.

⟨ϕ|0⟩ = Ce−
ω
2 ϕ(t,x)2e−iE0η

As long as the primordial density fluctuation has linear dependence over the above quantum field, it should
obey a Gaussian distribution. There are other ways to detect whether the distribution is Gaussian or not.
By measuring odd-order moments of the distribution function. The bispectrum is the first non-zero moment
observed in non-Gaussian distribution, in the sense that if the bispectrum is non-zero, the distribution surely
is non-Gaussian. Note that the converse is not necessarily true. Hence, if we measure a non-zero bispectrum,
we can be sure that the distribution is non-Gaussian and there are some interaction or particle produc-
tion taking place. Measurements of higher-order correlation functions (or non-Gaussianity) are the analog of
measuring collisions in particle physics. This is what inspires the study of these non-Gaussianity in the CMB
correlation function, to be named “cosmological collider physics”[6].

We can see the same from path integral approach as well. The wavefunction at any given time (which we
can set to t∗ = 0 without loss of generality) can be formally computed by the path integral formalism:

Ψ[ϕ] =

∫
DΦ eiS[Φ] ≈ eiS[Φcl]

with
Φ(0) = ϕ Φ(−∞+) = 0

Consider a scalar field, whose action is

S[Φ] =

∫
dt

(
1

2
Φ̇2 − 1

2
ω2Φ2

)
,

where Φ is the deviation from equilibrium and ω is the constant frequency of the oscillator. On-shell, the action
can equivalently be written as a pure boundary term

S[Φcl] =

∫ t∗

ti

dt

[
1

2
∂t(Φ̇clΦcl) −

1

2
Φcl(Φ̈cl + ω2Φcl)

]
=

1

2
Φ̇clΦcl

∣∣∣∣
t=t∗

,

where we have integrated by parts and used the fact that the classical solution satisfies the equation of motion
Φ̈cl + ω2Φcl = 0. To determine the classical solution Φcl(t) we have to specify two boundary conditions: We
require:

1. the late-time value of the oscillator position is Φcl(t∗ = 0) = ϕ, and

2. the early-time limit is the minimum-energy solution Φcl(t) ∼ eiωt.

The unique solution satisfying these boundary conditions is Φcl(t) = ϕeiωt. Substituting this into above, we get

S =
iω

2
ϕ2 =⇒ exp(iS) = exp

(
−ω

2
ϕ2
)

=⇒ |Ψ[ϕ]|2 = e−ωϕ2

.

We see the familiar fact that the ground state wavefunction of the simple harmonic oscillator is a Gaussian.
The width of this Gaussian determines the size of the zero-point fluctuations of the oscillator:

⟨ϕ2⟩ =
1

2ω
.

We conclude that in the absence of interaction, Inflation to a large extend predicts gaussianity. Therefore, any
deviation from gaussianity has the potential to teach us much more about the early universe and inflation that
we cannot ignore it. Therefore, it is important for us to understand how to calculate the bispectrum (three
point function), trispectrum (four point function), and other measures of non-gaussianity.

5



2.1 Cosmological Correlation Function

The main object for studying the statistics of fluctuation is the correlation function. Power spectrum, bis-
pectrum or trispectrum are some of the most used correlation function in the study of statistics of the early
universe quantum fluctuation. There are mainly three ways to evaluate the correlation function in quantum
field theory relevant for cosmological study. They are as follows:

• In-In Formalism
⟨O(t)⟩ = ⟨Ω|Tei

∫ t
ti

dt′Hint(t
′)OI(t)Te

−i
∫ t
ti

dt′Hint(t
′) |Ω⟩ ,

where T denotes anti time-ordering.

• Wavefunction Approach

• Bootstrap

However, we will limit ourselves to In-In formalism, but in the next chapter we will explore few aspects of
Bootstrap philosophy.

2.1.1 In-In Formalism

One of the starting assumption of S matrix formalism is the requirement of adiabatic switching[7]. We need
the interactions to be turned “on” and turned “off” adiabatically. When the interaction is turned ”on” and
”off” adiabatically, the initial and final states are eigenstate of free Hamiltonian. If we now, consider a non-
equilibrium process such as inflationary cosmology, where the interaction never ceases and particles are still
evolving. The dynamical coupling due to gravity becomes important around the Hubble radius and thereafter,
such that there is no “out” state in this case. Thus, Out of equilibrium1, we can neither apply the adiabatic
theorem nor specify the final asymptotically free state and thus the standard S-matrix formalism breaks down.
Even if, we could turn the interaction off in asymptotic future, if the |0⟩out and |0⟩in are not same upto a phase,
as is the case in Hawking radiation. The in-out formalism will not work in such case.

Therefore, we have to look for alternate formalism which can deal with this problem. In the presence of
non-equilibrium perturbation, the asymptotic initial and final states do not even belong to the same hilbert
space. The idea of in-in formalism is to avoid any reference of initial and final state. To avoid any reference to
the final state in the asymptotic future, the trick is to simply rewind the time evolution back to the asymptotic
past and hence the name, “in-in” formalism.

Let’s start with defining an equal time in-in correlator as the expectation value of some operator O with
respect to some state |Ω⟩ in Heisenberg Picture:

⟨O⟩ = ⟨Ω| O |Ω⟩

Since we assumed O(t) to be product of equal time operators acting at different point in space, it is important
to mention the consequence of such choice. Time ordering of O is therefore irrelevant. We will assume O(t) to
be Hermitian as well, therefore:

⟨Ω| O |Ω⟩∗ = ⟨Ω| O† |Ω⟩ = ⟨Ω| O |Ω⟩ ∈ R.

We will use the interaction picture for evaluating the correlation functions, therefore we will utilize the following
property[8]:

OH(t) = U†
I (t, 0)OI(t)UI(t, 0) and |Ω⟩H = UI(0, t) |Ω(t)⟩I

with the assumption that both pictures coincide at t = 0. All that remains now is to define the |Ω⟩. Since
we will only be interested in the case where |Ω⟩ is the vacuum of interacting theory which in the far past
asymptotes the free theory vacuum |0⟩, defined by ak |0⟩ = 0 (but ak |Ω⟩ ≠ 0).

lim
t→−∞

|Ω⟩ = |0⟩

We assume that, |Ω⟩ minimizes both Hfull as well as Hint, therefore we can use following reasoning to define
the above.

e−iHint(t−ti) |Ω⟩ =
∑

n

e−iHint(t−ti) |n⟩ ⟨n|Ω⟩

1by equilibrium we mean, the final state vector is not changing with time
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= e−iE0(t−ti) |0⟩ ⟨0|Ω⟩ +
∑

n ̸=0

e−iEn(t−ti) |n⟩ ⟨n|Ω⟩

under ti → ti(1 − iϵ)

= e−iE0(t−ti)eϵE0ti |0⟩ ⟨0|Ω⟩ +
∑

n ̸=0

e−iEn(t−ti)eϵEnti |n⟩ ⟨n|Ω⟩

In the limit ti → −∞, we have:
lim

ti→−∞
e−iHint(t−ti) |Ω⟩ = |0⟩

Therefore we define:

UI(t,−∞) = Te−i
∫ t
−∞(1−iϵ)

dt′Hint(t
′)

U†
I (t,−∞) = Tei

∫ t
−∞(1+iϵ)

dt′Hint(t
′)

Here T is the time ordering operator and T̄ is the anti-time ordering operator. Hence,

⟨O(t)⟩ = ⟨Ω| O(t) |Ω⟩ = ⟨0|U†
I (t,−∞)OI(t)UI(t,−∞) |0⟩

= ⟨0|Tei
∫ t
−∞(1+iϵ)

dt′Hint(t
′)OI(t)Te−i

∫ t
−∞(1−iϵ)

dt′Hint(t
′) |0⟩

The above result is derived in Interaction Picture. If we can use the assumption of adiabatic switching, such
that

|0⟩out = eiθ |0⟩in
then, both in-in formalism and in-out formalism coincide.

2.2 Feynman Rules

Rather than using the above mentioned general expression for calculating the correlation function. We will
often rely on the diagrammatic approach. The diagrammatic approach to computing in-in correlation functions
follows a set of rules that can be stated without explicit derivation. For an interaction Lagrangian of the form

Lint = −V
n!
ϕn,

the Feynman rules are summarized as follows:

1. Begin by drawing the final time surface at t = t∗.

2. Include all relevant diagrams contributing to the desired process, allowing interaction vertices both above
and below the final time surface.

3. • Propagators corresponding to lines that intersect or terminate on the final time surface are Wightman
functions:

Wk(t, t′) = fk(t)f∗k (t′),

where the time argument t corresponds to the uppermost vertex and t′ to the lowermost.

• Lines entirely below the final time surface are associated with the Feynman propagator:

GF (k; t, t′) = Wk(t, t′)θ(t− t′) +Wk(t′, t)θ(t′ − t).

• Lines entirely above the final time surface correspond to time-reversed Feynman propagators:

GF (k; t′, t) = G∗
F (k; t, t′).

4. Assign a factor of −iV to each vertex below the final time surface and iV † to each vertex above it. Here,
V is determined by functional differentiation of the interaction Hamiltonian. Momentum conservation is
imposed at each vertex, along with an overall momentum-conserving delta function in Fourier space.

5. Integrate over the time coordinates of all vertex insertions using the measure dt ≡ dt a3(t). For diagrams
with internal loops, also integrate over the loop momenta.
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6. Include any relevant symmetry factors, dividing the diagram by them where applicable. If diagrams are
related by reflection across the final time surface, consider only one representative and take 2 Re of the
final result.

These rules will be employed to compute the correlation functions in the context of our analysis.

x1

x2

x3

x4

⇒ t
x⃗1 x⃗2 x⃗3 x⃗4

anti
time
ordering

time
ordering

x1 x3

x2 x4

⇒
t

x⃗1 x⃗2 x⃗3 x⃗4

x1

x2

x3

x4

⇒
t

x⃗1 x⃗2 x⃗3 x⃗4

Figure 2.2: We see how the feynman diagrams in the in-out formalism transform into in-out feynman diagram.
Note that in the first diagram x1 = (t1, x⃗1) and x2 = (t2, x⃗2) share a common vertex on both sides, in second
diagram, x1 and x3 share the same vertex and in the last x1 and x4 share the same vertex.
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Chapter 3

Quantum Field Theory in curved
spacetime

In flat spacetime, quantum field theory provides a well-defined framework for particle physics, with a unique
vacuum and global Poincaré symmetry that guarantees energy conservation and a consistent particle interpre-
tation. However, in curved spacetime or non-inertial frames, these assumptions no longer hold. The very notion
of particles becomes observer-dependent, and the vacuum state is no longer unique. This breakdown lies at the
heart of phenomena such as Unruh and Hawking radiation, and plays a crucial role in the physics of the early
universe.

In this chapter, we develop the formal structure necessary to describe quantum fields in curved and acceler-
ating backgrounds. We begin by revisiting canonical quantization of the scalar field in general curved spacetime
and introduce the Klein-Gordon inner product to extract a consistent creation and annihilation operator al-
gebra. The ambiguity in the choice of mode functions leads naturally to Bogoliubov transformations, which
relate vacua associated with different observers.

To make this abstract discussion concrete, we study Rindler spacetime — the coordinate system appropriate
for uniformly accelerating observers — and derive the Unruh effect: the prediction that such observers detect
a thermal spectrum even in Minkowski vacuum[9]. The transformation between Minkowski and Rindler modes
is worked out explicitly using Bogoliubov coefficients, with a focus on preserving commutation relations. We
further explore Killing vector fields as generators of isometries, showing how they can be used to identify
conserved quantities and interpret positive-frequency solutions as particle states.

This chapter lays the groundwork for understanding gravitational particle production in an expanding
universe, which we explore in detail in the next chapter. By carefully analyzing observer-dependent vacuum
structure, we develop the mathematical and physical tools needed to describe particle creation purely due to
spacetime dynamics.

3.1 Bogoliubov Transformation

This part is crucial for understanding how particle production modifies the vacuum and which can then impact
the observable correlators like the bispectrum. We begin by defining the commutator between the annihilation
and creation operators in the context of canonical quantization and limit ourselves to the scalar field in this
chapter. Given the solutions f and g to the Klein-Gordon equation, the commutator is defined as:

[a(f), a†(g)] = ⟨f, g⟩,

where the norm ⟨f, g⟩ represents the inner product of the solutions f and g, and is given by:

⟨f, g⟩ = i

∫
d3x
√

|h| {f∗(∂tg) − (∂tf
∗)g} .

This expression for the inner product arises from the structure of the Klein-Gordon equation, ensuring that the
commutator between the annihilation and creation operators is consistent with the quantization of the field. It
is important to note that this inner product is antisymmetric, meaning:

⟨g, f⟩∗ = −⟨f, g⟩.

We can also verify this symmetry explicitly as follows:

⟨g∗, f∗⟩ = i

∫
d3x
√

|h| {g(∂tf
∗) − (∂tg)f∗}
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= −⟨f, g⟩.

Next, we define the field ϕ(t, x) as a sum over the creation and annihilation operators:

ϕ(t, x) =
∑

k

(
akuk + a†ku

∗
k

)
.

Using this definition, we can express the annihilation operator ak as the inner product of the field ϕ(t, x) with
the mode function uk:

ak = ⟨uk, ϕ(t, x)⟩.
In curved spacetime or non-inertial coordinates, different observers will disagree on what constitutes a

vacuum or particle. This disagreement is encoded mathematically through Bogoliubov transformations, which
relate two distinct sets of mode functions. Crucially, if the vacuum defined by one observer appears as a squeezed
state to another, this results in a non-zero particle number expectation — a key signature of gravitational
particle production.

Much like in classical physics, we studied that canonical transformations preserve the structure of Poisson
Brackets, i.e.:

{P,Q}
PB

= {P ′, Q′}
PB

A similar concept also exists in quantum field theory for creation and annihilation operators. We start with
the condition that:

[a, a†] = [b, b†]

and the transformation relation which satisfies it

b = c1a+ c2a
†

b† = d1a+ d2a
†

since we know that:

b† = (c1a+ c2a
†)†

= c⋆1a
† + c⋆2a

=⇒ d1 = c⋆2

d2 = c⋆1

now

[b, b†]± = [c1a+ c2a
†, c⋆1a

† + c⋆2a]±

= c⋆1[c1a+ c2a
†, a†]± + c⋆2[c1a+ c2a

†, a]±

= c21[a, a†]± + c⋆1c2����:0
[a†, a†] + c⋆2c1���*

0
[a, a] + c22[a†, a]±

= (c21 ∓ c22)[a, a†]±

where, ± refers to fermionic or bosonic creation and annihilation operator respectively. Now, we will apply this
concept to study Unruh radiation. The goal is this

1. Solve the KG equation in minkowski coordinates

2. Solve the KG equation in rindler coordinates

3. Find the transformation of creation and annihilation operator between the two coordinates which preserves
the commutation relationship.

There is another key result that we have to discuss. Given how the modes transform between two coordi-
nates, how can we find the corresponding transformation between the creation and annihilation
operators in the two coordinate systems?

ϕ(x) =
∑

i

[âifi + â†if
⋆
i ] ϕ(x) =

∑

i

[b̂igi + b̂†ig
⋆
i ]

Let us consider the following transformation between modes:

fi =
∑

j

αijgj + βijg
⋆
j
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then,

ϕ(x) =
∑

i

[âifi + â†if
⋆
i ]

=
∑

i


âi

∑

j

(αijgj + βijg
⋆
j ) + â†i

∑

j

(α⋆
ijg

⋆
j + β⋆

ijgj)




=
∑

i


∑

j

(αij âi + β⋆
ij â

†
i )gj +

∑

j

(βij âi + α⋆
ij â

†
i )g

⋆
j




=
∑

j

(∑

i

(αij âi + β⋆
ij â

†
i )

︸ ︷︷ ︸
b̂j

gj +
∑

i

(βij âi + α⋆
ij â

†
i )

︸ ︷︷ ︸
b̂†j

g⋆j

)

=
∑

j

[b̂jgj + b̂†jg
⋆
j ]

If we wish to think in terms of matrices then,
[
fi
f⋆i

]
=

[
αij βij
β⋆
ij α⋆

ij

] [
gj
g⋆j

]

[
b̂i
b̂†i

]
=

[
αji β⋆

ji

βji α⋆
ji

] [
âj
â†j

]

Similarly, we consider the inverse transformation:

gi =
∑

j

λijfj + µijf
⋆
j

The coefficients can be extracted by utilizing the normalization condition:

⟨fi, fj⟩ = δij〈
f⋆i , f

⋆
j

〉
= −⟨fi, fj⟩⋆ = −δij

The last condition is direct consequence of how Klein Gordon inner product is defined. we get:

⟨gi, fj⟩ =

〈∑

k

λikfk + µikf
⋆
k , fj

〉

=
∑

k

λik ⟨fk, fj⟩ + µik����:0⟨f⋆k , fj⟩

=
∑

k

λikδkj = λij

and

〈
gi, f

⋆
j

〉
=

〈∑

k

λikfk + µikf
⋆
k , f

⋆
j

〉

=
∑

k

λik
〈
fk, f

⋆
j

〉
+ µik

〈
f⋆k , f

⋆
j

〉

=
∑

k

−µikδkj = −µij

utilizing
⟨a, b⟩ = ⟨b, a⟩⋆ = −⟨a⋆, b⋆⟩

we get:

⟨gi, fj⟩ = ⟨fj , gi⟩⋆ = α⋆
ji〈

gi, f
⋆
j

〉
=
〈
f⋆j , gi

〉⋆
= −⟨fj , g⋆i ⟩︸ ︷︷ ︸

−βji
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= βji

Hence,

gi =
∑

j

(α⋆
jifj − βjif

⋆
j )

Finally the transformation can be expressed as:

ϕ(x) =
∑

i

[b̂igi + b̂†ig
⋆
i ]

=
∑

i


b̂i

∑

j

(α⋆
jifj − βjif

⋆
j ) + b̂†i

∑

j

(αjif
⋆
j − β⋆

jifj)




=
∑

i


∑

j

(α⋆
jib̂i − β⋆

jib̂
†
i )fj +

∑

j

(αjib̂
†
i − βij b̂i)f

⋆
j




=
∑

j

(∑

i

(α⋆
jib̂i − β⋆

jib̂
†
i )

︸ ︷︷ ︸
âj

fj +
∑

i

(αjib̂
†
i − βij b̂i)

︸ ︷︷ ︸
â†
j

f⋆j

)

=
∑

j

[âjfj + â†jf
⋆
j ]

In matrix form:
[
gi
g⋆i

]
=

[
α⋆
ji −βji

−β⋆
ji αji

] [
fj
f⋆j

]

[
âi
â†i

]
=

[
α⋆
ij −β⋆

ij

−βij αij

][
b̂j
b̂†j

]

The above transformation corresponds to bosons, since

α2 − β2 = 1

In case of fermions, we have
α2 + β2 = 1

but the inner product would also be defined in equivalent manner.

3.2 Rindler Spacetime

The accelerated observer is described by the trajectory:

ct(τ) =
c

α
sinh(ατ) x(τ) =

c

α
cosh(ατ)

and, we observe that

x2 − c2t2 =
c2

α2

where α is the norm of 4-acceleration. We can define the new hyperbolic coordinate, more acquainted to study
accelerated motion.

ct =
ceaξ/c

a
sinh(aη) x =

ceaξ/c

a
cosh(aη) (3.1)

Let us for a minute look back at the coordinate transformation. Clearly this covers only the region x > 0 and
as

x− t =
c

a
e
aξ/c[cosh(aη) − sinh(aη)] =

c

a
e
aξ/ceaη > 0

Our coordinate transformation only covers the region x > |t|, not the entire spacetime. To extend the
coordinates to all of spacetime, we must also include the other three regions. R II and R III are spacelike, so
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we won’t focus on them here—they can be accessed via analytic continuation if needed. For R IV , we simply
flip the signs, yielding:

ct = −ce
aξ/c

a
sinh(aη), x = −ce

aξ/c

a
cosh(aη), for x < |t| (3.2)

Strictly speaking, we’re abusing notation since both R I and R IV have ξ, η ∈ (−∞,+∞), but this will be
handled by clearly stating the region under discussion. The origin remains uncovered, but it’s a zero-measure
point and can be ignored for now. We’ll revisit analytic continuation in section 3.4 during our discussion of
Bogoliubov transformations.

In the new (cη, ξ) coordinates, the metric becomes 1 :

ds2 = c2dt2 − dx2

=

(
d

[
ceaξ/c

a
sinh(aη)

])2

−
(
d

[
ceaξ/c

a
cosh(aη)

])2

=
[
e
aξ/c sinh(aη)dξ + ce

aξ/c cosh(aη)dη
]2

−
[
e
aξ/c cosh(aη)dξ + ce

aξ/c sinh(aη)dη
]2

= e
2aξ/c

[
c2dη2 − dξ2

]

The proper acceleration in these coordinates is:

x2 − c2t2 =
c2

α2

c2e2aξ/c

a2
[
cosh2(aη) − sinh2(aη)

]
=
c2

α2

⇒ α = ae−
aξ/c

We can easily spot that the metric tensor is independent of cη and thus ∂cη ≡ (1, 0) is the killing vector in
this coordinate. The norm of this killing vector field is given by

g(∂η, ∂η) =
(

1 0
) [ gηη gηξ

gηξ gξξ

](
1
0

)

= gηη

= e
2aξ/c > 0 (3.3)

This is timelike killing vector. Switching to natural units with c = 1. The Klein Gordon Equation of massless
scalar field for the Rindler observer is:

1√
|g|
∂µ(
√
|g|gµν∂νϕ) = 0

e−2aξ∂µ(e2aξgµν∂ν)ϕ = 0

e−2aξ∂η(e2aξgηη︸ ︷︷ ︸
1

∂η)ϕ+ e−2aξ∂ξ(e2aξgξξ︸ ︷︷ ︸
−1

∂ξ)ϕ = 0

e−2aξ(∂2η − ∂2ξ )ϕ = 0

These are differential equation with constant coefficient, thus the general solution is linear combination of plane
wave solutions.

ϕ =
∑

Ae
− ikµx

µ

+Beikµx
µ

=
∑

Ae−ikηη+ikξξ +Beikηη−ikξξ

with kµ = (kη, kξ). The solution to Klein Gordon Equation in minkowski coordinate is given via:

ϕ =
∑

A e−iktt+ikxx + B eiktt−ikxx

1With the redefinition dξ̄ =
(
1 + a

c
ξ̄
)
dξ ⇒ ξ = c

a
ln

(
1 + a

c
ξ̄
)
⇒ eaξ/c = 1 + a

c
ξ̄, we get:

ds2 =
(
1 +

a

c
ξ̄
)2

c2dη2 − dξ̄2
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3.3 Killing Vector Field

In general relativity, killing vector fields are defined as the generator of isometry in the same sense, as we define
momentum as generator of translation in Quantum Field Theory. The group theoretic structure of these killing
vector fields emerges from their lie algebra. I’d like to remind us that from weinberg’s QFT volume 1, we learnt
that the eigenvalue of the generator of symmetry is the conserved quantity. Therefore one can expect a version
of the same to be true even here. We will use the killing vector field to define the basis, but first we need to
revise certain things.

A general coordinate transformation can be expressed as:

yα = eϵLξxα = eϵξxα

≈ xα − ϵξα (ξ = ξµ∂µ)

In the exact above sense, we interpret the killing vector ξ as the generator of isometry i.e. they preserve the
norm of 4-vectors. Killing vectors are quite useful in the General Relativity as they lead to certain conserved
quantity along the geodesic as follows:

dKµp
µ

dλ
= pν∇ν(Kµp

µ)

= pν(∇νKµ)pµ + pνKµ(∇νp
µ)

=
1

2
pνpµ(∇νKµ + ∇µKν) +Kµ(pν∇νp

µ)

= 0

The first term vanishes due to Killing equation and the second term due to Geodesic Equation. Another insight
can be borrowed from studying the exponential map of killing vector fields in Minkowski spacetime. We begin
by first finding out the killing vectors:

∇µχν + ∇νχµ = 0

Note that Γi
jk = 0 in Minkowski coordinates. For µ = ν = t

∇tχt + ∇tχt = 0 =⇒ χt = f(x)

for µ = ν = x

∇xχx + ∇xχx = 0 =⇒ χx = g(t)

for µ = t and ν = x

∇tχx + ∇xχt = 0

1

c

∂g(t)

∂t
+
∂f(x)

∂x
= 0

This implies that the solution are

f(x) = −x g(t) = ct

Therefore, in component form:

χµ = (x, ct, 0, 0) χµ = (−x, ct, 0, 0)

or, with c = 1
χ = x∂t + t∂x (3.4)

We will use this representation to derive the Lorentz Transformation. Consider the following:

eβχx =

∞∑

n=0

1

n!
βn (x∂t + t∂x)

n
x

= x+ β (x∂t + t∂x)x+
β2

2!
(x∂t + t∂x)

2
x+

β3

3!
(x∂t + t∂x)

3
x . . .

= x+ βt+
β2

2!
(x∂t + t∂x) t+

β3

3!
(x∂t + t∂x)x . . .
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=

(
1 +

β2

2!
+ . . .

)
x+

(
β +

β3

3!
+ . . .

)
t

= cosh(β)x+ sinh(β)t

Similarly

eβχt =

∞∑

n=0

1

n!
βn (x∂t + t∂x)

n
t

= t+ β (x∂t + t∂x) t+
β2

2!
(x∂t + t∂x)

2
t+

β3

3!
(x∂t + t∂x)

3
t . . .

= t+ βx+
β2

2!
(x∂t + t∂x)x+

β3

3!
(x∂t + t∂x) t . . .

=

(
1 +

β2

2!
+ . . .

)
t+

(
β +

β3

3!
+ . . .

)
x

= cosh(β)t+ sinh(β)x

and

eβχy = y

eβχz = z

Represented in matrix form:



t′

x′

y′

z′


 =




cosh(β) sinh(β) 0 0
sinh(β) cosh(β) 0 0

0 0 1 0
0 0 0 1







t
x
y
z




The above transformation describes boost. Since, it is used to jump between the frame of references. The
conserved quantity associated with this is:

χµp
µ = −xE + pxt

is due to dpµ

dτ = 0:

d

dτ
χµp

µ = −E dx

dτ
+ px

dt

dτ
− x

�
�
�7

0
dE

dτ
+ t

�
�
�7

0
dpx
dτ

= −γEv + γ2mv

= −γ2mv + γ2mv (using E = γm)

= 0

We have another killing vector field which describes the rotation about z-axis

ξ = (0,−y, x, 0) ≡ −y∂x + x∂y

The relevant transformation is:

eθξx =

∞∑

n=0

1

n!
θn (−y∂x + x∂y)

n
x

= x+ θ (−y∂x + x∂y)x+
θ2

2!
(−y∂x + x∂y)

2
x+

θ3

3!
(−y∂x + x∂y)

3
x . . .

= x− θy − θ2

2!
(−y∂x + x∂y) y − θ3

3!
(−y∂x + x∂y)x . . .

=

(
1 − θ2

2!
+ . . .

)
x−

(
θ − θ3

3!
+ . . .

)
y

= cos(θ)x− sin(θ)y

Similarly,

eθξy =

∞∑

n=0

1

n!
θn (−y∂x + x∂y)

n
y
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= y + θ (−y∂x + x∂y) y +
θ2

2!
(−y∂x + x∂y)

2
y +

θ3

3!
(−y∂x + x∂y)

3
y . . .

= y + θx+
θ2

2!
(−y∂x + x∂y)x− θ3

3!
(−y∂x + x∂y) y . . .

=

(
1 − θ2

2!
+ . . .

)
y +

(
θ − θ3

3!
+ . . .

)
x

= cos(θ)y + sin(θ)x

Represented in matrix form:



t′

x′

y′

z′


 =




1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1







t
x
y
z




The conserved quantity associated with this killing vector is:

d

dτ
ξµp

µ = 0 =⇒ ξµp
µ = −ypx + xpy = Jz

Since, the metric in Minkowski spacetime is independent of all coordinates, there are 4 Killing vectors along
each of those axis2. We define

pµ = (E, px, py, pz)

Kt = ∂t ≡ (1, 0, 0, 0)

Kx = ∂x ≡ (0, 1, 0, 0)

Ky = ∂y ≡ (0, 0, 1, 0)

Kz = ∂z ≡ (0, 0, 0, 1)

Ktp
t = E

Kxp
x = px

Kyp
y = py

Kzp
z = pz

The transformation associated with them are:

et
′Ktx(t) = et

′∂tx(t)

=

∞∑

n=0

(t′)n

n!

∂nx(t)

∂tn
= x(t+ t′)

which is the taylor series expansion of position of particle. The general form of Killing vector field in Minkowski
spacetime is given as

ξ(A)
α = c(A)

α + ϵ
(A)
αβ x

β

where xµ =
(
x0, x1, x2, x3

)
and the killing vectors associated with translation are:

c(1)α = (1, 0, 0, 0) ϵ
(1)
αβ = 0

c(2)α = (0, 1, 0, 0) ϵ
(2)
αβ = 0

c(3)α = (0, 0, 1, 0) ϵ
(3)
αβ = 0

c(4)α = (0, 0, 0, 1) ϵ
(4)
αβ = 0

These above generators lead to conserved quantities such as Energy and Momentum. The Killing vectors
associated with boost and rotation are:

c(5)α = 0 ϵ
(5)
αβ =




x0 x1 x2 x3

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 ⇒ ϵ

(5)
αβx

β =
(
x1,−x0, 0, 0

)

c(6)α = 0 ϵ
(6)
αβ =




0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0


 ⇒ ϵ

(6)
αβx

β =
(
x2,−x1, 0, 0

)

2This is the exact reason why killing vector fields are useful. They don’t just provide us the constant of motion but also indicate
that there exists a special coordinate system in which the metric is independent of those coordinates
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c(7)α = 0 ϵ
(7)
αβ =




0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0


 ⇒ ϵ

(7)
αβx

β =
(
x3,−x0, 0, 0

)

c(8)α = 0 ϵ
(8)
αβ =




0 1 0 0
0 0 1 0
0 −1 0 0
0 0 0 0


 ⇒ ϵ

(8)
αβx

β =
(
0, x2,−x1, 0

)

c(9)α = 0 ϵ
(9)
αβ =




0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0


 ⇒ ϵ

(9)
αβx

β =
(
0, x3,−x1, 0

)

c(10)α = 0 ϵ
(10)
αβ =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


 ⇒ ϵ

(10)
αβ xβ =

(
0, 0, x3,−x2

)

The above matrices are the matrix representation of killing vectors which are the generators of Poincaré Group
mentioned in quantum field theory textbooks.

3.4 Back to Wave Equation

Reverting back to the KG equation in Rindler coordinate:

∂η =
∂t

∂η
∂t +

∂x

∂η
∂x

= eaξ (cosh(aη)∂t + sinh(aη)∂x)

= a(x∂t + t∂x)

We quickly observe that this is the generator of boost along x-axis. Referring to (3.3) and (3.4), we find that
it is timelike killing vector field. Reminding ourselves that in Quantum Field Theory, all these generators are
actually operators and thus, it makes sense to consider their eigenfunctions as the preferred basis for calculations
and interpretation of solutions. We consider the eigenvalue equation for plane waves in Minkowski spacetime.

∂tAe
−iktt+ikxx = −iktAe−iktt+ikxx

∂tBe
iktt−ikxx = iktBe

iktt−ikxx

In the unitary representation, the above equation looks like:

i∂tAe
−iktt+ikxx = ktAe

iktt−ikxx

i∂tBe
iktt−ikxx = −ktBe−iktt+ikxx

hence, Beiktt−ikxx are the negative energy solution and Ae−iktt+ikxx are positive energy solution. Therefore, it
is reasonable to expect that A will be interpreted as ‘annihilation’ operator which destroys particle and B will
be referred as ‘creation’ operator. For Rindler observer3:

∂ηAe
−ikηη+ikξξ = −ikηAe−ikηη+ikξξ

∂ηBe
ikηη−ikξξ = ikηBe

ikηη−ikξξ

Thus, based on the argument of identifying the coefficient of positive eigenvalue plane wave solution as the
annihilation operator. We interpret A as the annihilation operator and B as the creation operator. Hence,

ϕminkowski =

∫ ∞

−∞

dkx√
2π(2kt)

[akx
e−iktt+ikxx + a†kx

eiktt−ikxx]

and

ϕrindler =

∫ ∞

−∞

dkξ√
2π(2kη)

[bkξ
e−ikηη+ikξξ + b†kξ

eikηη−ikξξ]

3Note that here we are using the eigenbasis of generator of boost for mode expansion
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The key idea is this: since the wave equation is conformally invariant and Rindler space is conformally related
to Minkowski, we can expand the field in plane waves—just as in flat space. Using lightcone coordinates
simplifies things further: positive-frequency modes in Rindler match directly with their flat-space counterparts
(and similarly for negative-frequency modes). This lack of mode mixing significantly simplifies the computation
of Bogolyubov coefficients. Instead of handling each case separately or computing the full Klein-Gordon inner
product, we can isolate modes via a simple Fourier transform. We start by splitting the field into positive- and
negative-frequency parts.

ϕrindler =

∫ ∞

0

dkξ√
2π(2kη)

[bkξ
e−ikηη+ikξξ + b†kξ

eikηη−ikξξ] +

∫ 0

−∞

dkξ√
2π(2|kη|)

[bkξ
eikηη+ikξξ + b†kξ

e−ikηη−ikξξ]

(3.5)

From the wave equation

(1/c2∂2η − ∂2ξ )e−ikηη+ikξξ = 0

(−k2
η/c2 + k2ξ)e−ikηη+ikξξ = 0 =⇒ kη = |kξc|

Defining k ≡ |kξ| and using u± = η ± ξ with c = 1, to switch to null/lightcone coordinates:

ϕrindler =

∫ ∞

0

dk√
2π(2k)

[bke
−iku− + b†ke

iku− ] +

∫ ∞

0

dk√
2π(2|k|)

[b−ke
−iku+ + b†−ke

iku+ ] (3.6)

doing the same x± = ct± x with ω = |kx| in Minkowski spacetime with signature (+ −−−).

ϕminkowski =

∫ ∞

−∞

dkx√
2π(2kt)

[akx
e−iktt+ikxx + a†kx

eiktt−ikxx]

=

∫ ∞

−∞

dkx√
2π(2|kx|)

[akxe
−i|kxc|t+ikxx + a†kx

ei|kxc|t−ikxx] (using kt = |kxc|)

using ω = |kx|

=

∫ ∞

0

dω√
2π(2ω)

[aωe
−iωx− + a†ωe

iωx− ] +

∫ ∞

0

dω√
2π(2|ω|)

[a−ωe
−iωx+ + a†−ωe

iωx+ ]

Now comes the chief advantage of this approach mentioned above: since the notion of positive/negative momenta
is preserved under the conformal transformation from Minkowski to Rindler space, we can directly identify

∫ ∞

0

dk√
2π(2k)

[bke
−iku− + b†ke

iku− ] =

∫ ∞

0

dω√
2π(2ω)

[aωe
−iωx− + a†ωe

iωx− ]

∫ ∞

0

dk√
2π(2|k|)

[b−ke
−iku+ + b†−ke

iku+ ] =

∫ ∞

0

dω√
2π(2|ω|)

[a−ωe
−iωx+ + a†−ωe

iωx+ ]

Peforming the fourier transform:

∫ ∞

−∞

dx−√
2π
eiω

′x−

∫ ∞

0

dk√
2π(2k)

[bke
−iku− + b†ke

iku− ]

=

∫ ∞

−∞

dx−√
2π
eiω

′x−

∫ ∞

0

dω√
2π(2ω)

[aωe
−iωx− + a†ωe

iωx− ]

=

∫ ∞

−∞

dx−√
2π

∫ ∞

0

dω√
2π(2ω)

[aωe
−i(ω−ω′)x− + a†ωe

i(ω+ω′)x− ]

=

∫ ∞

0

dω√
2ω

[aωδ(ω − ω′) + a†ωδ(ω + ω′)]

Since the above mode corresponds to positive frequencies i.e. ω′ > 0:

aω√
2ω

=

∫ ∞

−∞

dx−√
2π

∫ ∞

0

dk√
2π(2k)

[bke
−iku−+iω′x− + b†ke

iku−+iω′x− ]

aω =

∫ ∞

−∞

dx−√
2π

∫ ∞

0

dk√
2π

√
ω

k
[bke

−iku−+iω′x− + b†ke
iku−+iω′x− ]

18



Since the above mode corresponds to positive frequencies i.e. ω′ > 0:

aω√
2ω

=

∫ ∞

−∞

dx−√
2π

∫ ∞

0

dk√
2π(2k)

[bke
−iku−+iω′x− + b†ke

iku−+iω′x− ]

aω =

∫ ∞

−∞

dx−√
2π

∫ ∞

0

dk√
2π

√
ω

k
[bke

−iku−+iω′x− + b†ke
iku−+iω′x− ]

we can express the above entirely in terms of minkowski lightcone coordinate as:

ds2minkowski = ds2rindler

dt2 − dx2 = e2aξ(dη2 − dξ2)

dx−dx+ = e−a(u−−u+)du−du+ (3.7)

From, above we see that (since there’s no mixing of coordinates)

x− =
e−au−

−a
x+ =

eau+

a

or, using (3.1)

x± = t± x

=
eaξ

a
[sinh(aη) ± cosh(aη)]

=
eaξ

a

[
eaη − e−aη

2
± eaη + e−aη

2

]

=
eaξ

a

[
eaη ± eaη

2
− e−aη ∓ e−aη

2

]

= ±e
a(ξ±η)

a
= ±e

±au±

a
(3.8)

Thus,

aω =

∫ ∞

−∞

dx−√
2π

∫ ∞

0

dk√
2π

√
ω

k

[
bke

−iku−+iω′ e
−au−

a + b†ke
iku−+iω′ e

−au−
a

]

Similarly, the inverse transformation is given as:

∫ ∞

−∞

du−√
2π
eik

′u−

∫ ∞

0

dω√
2π(2ω)

[aωe
−iωx− + a†ωe

iωx− ]

=

∫ ∞

−∞

du−√
2π
eik

′u−

∫ ∞

0

dk√
2π(2k)

[bke
−iku− + b†ke

iku− ]

=

∫ ∞

−∞

du−√
2π

∫ ∞

0

dk√
2π(2k)

[bke
−i(k−k′)u− + b†ke

i(k+k′)u− ]

=

∫ ∞

0

dk√
2k

[bkδ(k − k′) + b†kδ(k + k′)]

=
bk′√
2k′

Thus,

bk√
2k

=

∫ ∞

−∞

du−√
2π

∫ ∞

0

dω√
2π(2ω)

[aωe
−iωx−+iku− + a†ωe

iωx−+iku− ]

bk =

∫ ∞

−∞

du−√
2π

∫ ∞

0

dω√
2π

√
k

ω

[
aωe

iω e
−au−

a +iku− + a†e−iω e
−au−

a +iku−

]

=

∫ ∞

0

dω

[
aω

√
k

ω
F (ω, k) + a†ω

√
k⋆

ω⋆
F (−ω, k)

]
(3.9)
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using above we can also get:

(bk)† = b†k =

∫ ∞

0

dω

[
a†ω

√
k⋆

ω⋆
F (−ω,−k) + aω

√
k

ω
F (ω,−k)

]
(3.10)

Similarly, performing the Fourier transformation on negative modes, we get:

∫ ∞

−∞

du+√
2π
eik

′u+

∫ ∞

0

dω√
2π(2ω)

[a−ωe
−iωx+ + a†−ωe

iωx+ ]

=

∫ ∞

−∞

du+√
2π
eik

′u+

∫ ∞

0

dk√
2π(2|k|)

[b−ke
−iku+ + b†−ke

iku+ ]

=

∫ ∞

0

dk√
2|k|

[b−kδ(k − k′) + b†−kδ(k + k′)]

Since, here k′ < 0, we get:

b†−k√
2|k|

=

∫ ∞

−∞

du+√
2π

∫ ∞

0

dω√
2π(2|ω|)

[a−ωe
−iωx++iku+ + a†−ωe

iωx++iku+ ]

=

∫ ∞

−∞

du+√
2π

∫ ∞

0

dω√
2π(2|ω|)

[
a−ωe

−iω e
au+

a +iku+ + a†−ωe
iω e

au+

a +iku+

]

b†−k =

∫ ∞

−∞

du+√
2π

∫ ∞

0

dω√
2π

√
k

ω

[
a−ωe

−iω e
au+

a +iku+ + a†−ωe
iω e

au+

a +iku+

]
(3.11)

and thus:

b−k =

∫ ∞

−∞

du+√
2π

∫ ∞

0

dω√
2π

√
k

ω

[
a†−ωe

iω e
au+

a −iku+ + a−ωe
−iω e

au+

a −iku+

]

From (3.10), we get

b†−k =

∫ ∞

0

dω

[
a†ω

√
k⋆

ω⋆
F (−ω, k) + aω

√
k

ω
F (ω, k)

]
(3.12)

We observe that (3.11) and (3.12) are same with the identification a†−ω = aω.

Analytic Continuation

An alternative approach to deriving the Bogoliubov transformation—originally due to Unruh—is to expand the
field in a complete set of modes defined over the entire Minkowski spacetime.[10] These modes share the same
vacuum as the standard Minkowski modes but describe excitations differently. Crucially, they have a simpler
overlap with Rindler modes, making the Bogoliubov coefficients easier to compute.

The key idea is to analytically continue the Rindler modes across all of spacetime and express this contin-
uation in terms of the original Rindler modes. However, care is needed—particularly in Region I, where we
have:

∂η = a(x∂t + t∂x)

whereas in Region IV , we have
∂η = −a(x∂t + t∂x)

Therefore,

ϕ(x) =





∫ dkξ√
2π(2kη)

[b(1) e−ikηη+ikξξ︸ ︷︷ ︸√
4πkηg(1)

+b(1)† e+ikηη−ikξξ︸ ︷︷ ︸√
4πkηg(1)⋆

] In region I

∫ dkξ√
2π(2kη)

[b(2) eikηη+ikξξ︸ ︷︷ ︸√
4πkηg(2)

+b(2)† e−ikηη−ikξξ︸ ︷︷ ︸√
4πkηg(2)⋆

] In region IV

(3.13)

As we will see, this approach is similar to the one described in section 3.1. We start by writing the solution in
Minkowski spacetime

ϕ(x)minkowski =

∫
dk[akf + a†kf

⋆]
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ξ

x

t

η

R III

R II

R IR IV

ϕ(x) =
∫
dk[b(1)g(1) + b(1)†g(1)⋆]

ϕ(x) =
∫
dk[b(2)g(2) + b(2)†g(2)⋆]

Figure 3.1: We can write the field in the region of overlap (x > |t|) of Minkowski space and Rindler space using
complete basis set as ϕ(x) =

∫
dk[b(1)g(1) + b(1)†g(1)⋆ + b(2)g(2) + b(2)†g(2)⋆].

In Rindler spacetime, the solution in the combined region I and region IV is written as:

ϕ(x)rindler =

∫
dk[ b(1)g(1) + b(1)†g(1)⋆ + b(2)g(2) + b(2)†g(2)⋆ ]

defined in region 1
defined in region 4

In region I:

a(x− t) = eaξ(cosh aη − sinh aη)

= eaξ
(
eaη + e−aη

2
− eaη − e−aη

2

)

= e−a(η−ξ)

a(x+ t) = eaξ(cosh aη + sinh aη)

= eaξ
(
eaη + e−aη

2
+
eaη − e−aη

2

)

= ea(η+ξ)

In region IV , using (3.2):

a(−x+ t) = −eaξ(− cosh aη + sinh aη)

= eaξ
(
eaη + e−aη

2
− eaη − e−aη

2

)

= e−a(η−ξ)

a(−x− t) = −eaξ(− cosh aη − sinh aη)

= eaξ
(
eaη + e−aη

2
+
eaη − e−aη

2

)

= ea(η+ξ)

A quick observation tells us that region I and region IV are related via a transformation of the form η → η±iπ.
Since, the solution with kη > 0 is only convergent in the region where Im{η − ξ} < 0, we have to take the

branch cut in the upper half plane. Therefore, the function g
(1)
kξ

is analytic only in the lower half plane which
implies the transformation to be considered has to be η → η − iπ. Alternatively, If we now assume kη > 0 and

so kη = kξc ≡ k then we can write for g
(1)
kξ

in region I:

√
4πkηg

(1)
kξ

= e−ikηη+ikξξ = e−ikξ(η−ξ) =
[
e−a(η−ξ)

]ik/a
= [a(x− t)]

ik/a

= a
ik/a(x− t)

ik/a (3.14)
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In region IV

√
4πkηg

(2)⋆
−kξ

= e−ikηη+ikξξ = e−ikξ(η−ξ) =
[
e−a(η−ξ)

]ik/a
= [a(−x+ t)]

ik/a

= [aeln(−x+t)]
ik/a

Since the above expression involves zik/n and the exponent can be non-integer. It is a multivalued function and
therefore we have to choose the branch-cut before we proceed.

√
4πkηg

(2)
−kξ

= [ae
lim
ϵ→0

ln{x−(t−iϵ)}−iπ
]
ik/a = [aeln |x−t|−iπ]

ik/a = a
ik/a(x− t)

ik/ae
πk
a

In the above, we made the choice of branch cut in the upper half of the complex plane therefore, we had to
consider t→ lim

ϵ→0
(t− iϵ) i.e. approach the real t axis from below for the sake of convergence.

Re(t)

Im(t)

t

t− iϵ

Figure 3.2: Analytic continuation is viewed here as ap-
plying transformations that extend or shift the region
of convergence. The extended solutions are patched to-
gether to form a global description (an atlas). Choosing
the branch cut in the upper half of the complex t-plane,
we approach the real axis via the analytic region as:
limϵ→0(t− iϵ)

The choice of branch cut controls weather we get
e

πk
a or e−

πk
a in the above equation. Since we consid-

ered the branch cut in the upper half of the complex
plane, we are effectively doing the analytic continua-
tion in the lower half. The linear combination:

√
4πkη[g

(1)
kξ

+ e−
πk
a g

(2)⋆
−kξ

] = 2a
ik/a(x− t)

ik/a

is similar to (3.14) and is to be interpreted as the

analytic continuation of g
(1)
kξ

. We can consider a nor-
malized version with kη = kξ ≡ k :

h
(1)
k =

1√
2 sinh

(
πk
a

)
[
e

πk
2a g

(1)
k + e

πk
a e−

πk
2a g

(1)
k

]

=
1√

2 sinh
(
πk
a

)
[
e

πk
2a g

(1)
k + e−

πk
2a g

(2)⋆
−k

]

Coming back to Minkowski coordinate

ϕminkowski =

∫ ∞

−∞

dω√
2π(2ω)

[aωe
−iω(t−x) + a†ωe

iω(t−x)]

We observe that e−iω(t−x) solution with ω > 0 is
only convergent in the region where Im{t− x} < 0.
Since it is convergent in this region, we need to ensure
that it is also analytic here, which means we put the
branch cut in the upper half complex plane.4

Same procedure can also be applied to find the
conjugate mode. In region I for kη > 0:

√
4πkηg

(1)⋆
−kξ

= eikηη+ikξξ = eikξ(η+ξ) =
[
ea(η+ξ)

]ik/a
= [a(x+ t)]

ik/a

= a
ik/a(x+ t)

ik/a (3.15)

In region IV

√
4πkηg

(2)
kξ

= eikξη+ikξξ = eikη(η+ξ) =
[
ea(η+ξ)

]ik/a
= [a(−x− t)]

ik/a

= [ae
lim
ϵ→0

ln{−x−(t−iϵ)}
]
ik/a = [aeln |x+t|+iπ]

ik/a = a
ik/ae

−πk/a(x+ t)
ik/a

Thus,

h
(2)
k =

1√
2 sinh

(
πk
a

)
[
e

πk
2a g

(2)
k + e

πk
a e−

πk
2a g

(2)
k

]

=
1√

2 sinh
(
πk
a

)
[
e

πk
2a g

(2)
k + e−

πk
2a g

(1)⋆
−k

]

One could wonder, what about region II and region III? Actually, region II and region III are spacelike, so
we aren’t worried about them. Also, we expect the fields to commute in that region for the sake of causality.

4ln z = ln reiθ = ln r + iθ has a branch cut; as z(r; θ + 2π) = z(r; θ) but ln z(r; θ + 2π) = ln z(r; θ) + 2π, here periodicity of z
and ln z aren’t same. It is traditional to put this branch cut on the real axis, θ = 0, but we can of course put it anywhere starting
at the origin. The important point being that if we rotate θ by 2π we cross the branch cut.
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3.5 Relativity of Vacuum

In this section, we will evaluate the number of particles between Minkowski observer and Rindler observer. We

start by noting that b
(1)
k |0⟩M ̸= 0 since, |0⟩M is the minkowski vacuum. The way to think about it is this, b

(1)
k

is the ladder operator corresponding to generator of boost, whereas a
(1)
k is the ladder operator corresponding to

generator of time translation. Therefore, the shift in eigenvectors that ladder operators are supposed to do is
only for their respective eigenstates. We use the notation M ⟨0| . . . |0⟩M ≡ ⟨. . .⟩M , where M denotes minkowski.

⟨Nk⟩ =
〈
b†kbk

〉
M

=

∫
dω′dω M ⟨0|

[
a†ω′

√
k⋆

ω⋆′ F (−ω′,−k) + aω′

√
k

ω′F (ω′,−k)

]

×
[
aω

√
k

ω
F (ω, k) + a†ω

√
k⋆

ω⋆
F (−ω, k)

]
|0⟩M

Only non zero contribution comes from:

=

∫
dω′dω

√
k

ω′

√
k⋆

ω⋆
F (ω′,−k)F (−ω, k)

〈
aω′a†ω

〉
︸ ︷︷ ︸
δ(ω′−ω)

=

∫
dω

∣∣∣∣
k

ω

∣∣∣∣|F (−ω, k)|2

Now, we focus on integrating F (−ω, k):

F (ω, k) =

∫ ∞

−∞

du−
2π

exp

(
iω
e−au−

a
+ iku−

)

=

∫ ∞

−∞

du−
2π

exp

(
iω
e−au−

a

)
eiku−

making the substitution x = e−au− , we get

−ae−au−du− → dx
∫ ∞

−∞
→
∫ 0

∞

exp

(
iω
e−au−

a

)
→ eiω

x/a

eiku− → [e−au− ]
−ik
a

Therefore

F (ω, k) =
1

2π

∫ ∞

0

dx

ax
eiω

x/ax−
ik/a

=

∫ ∞

0

dx

2πa
x−

ik/a−1eiω
x/a

expressing in more familiar form:

F (ω, k) =

∫ ∞

0

dx

2πa
xs−1ebx, s = − ik

a
, b = − iω

a
.

We can utilize the identity

∫ ∞

0

dxxs−1e−bx = e−s ln(b)Γ(s) (with Re{b} > 0 and Re{s} ∈ (0, 1))

Since, our s and b are purely imaginary, we will use shift them along real axis (ϵ > 0) and then take the limit
ϵ→ 0.

F (ω, k) = lim
ϵ→0

∫ ∞

0

dx

2πa
x(s+ϵ)−1e(b+ϵ)x
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= lim
ϵ→0

1

2πa
e−(s+ϵ) ln(b+ϵ)Γ(s+ ϵ)

Since, logarithm is multivalued function in complex plane. We consider the branch cut along −ve x-axis:

lim
ϵ→0

ln(b+ ϵ) = lim
ϵ→0

ln
∣∣∣−iω

a
+ ϵ
∣∣∣+ lim

ϵ→0
i arg

(
−iω

a
+ ϵ
)

= ln
∣∣∣ω
a

∣∣∣+ lim
ϵ→0

i tan−1

(−ω/a

ϵ

)

= ln
∣∣∣ω
a

∣∣∣− i
π

2
sgn

(ω
a

)

Therefore, we get:

F (ω, k) =
1

2πa
e
−s lim

ϵ→0
ln(b+ϵ)

Γ(s)

=
1

2πa
exp

[
i
k

a

{
ln
∣∣∣ω
a

∣∣∣− i
π

2
sgn

(ω
a

)}]
Γ

(
− iω
a

)

=
1

2πa
exp

[
i
k

a
ln
∣∣∣ω
a

∣∣∣+
πk

2a
sgn

(ω
a

)]
Γ

(
− iω
a

)

Since, we had already defined a > 0, assuming ω > 0:

F (ω, k) =
1

2πa
exp

[
i
k

a
ln
∣∣∣ω
a

∣∣∣+
πk

2a

]
Γ

(
− iω
a

)

=
1

2πa
exp

[
i
k

a
ln
∣∣∣ω
a

∣∣∣+
πk

a
− πk

2a

]
Γ

(
− iω
a

)

since,

F (−ω, k) =
1

2πa
exp

[
i
k

a
ln
∣∣∣ω
a

∣∣∣− πk

2a

]
Γ

(
− iω
a

)

F (ω, k) = F (−ω, k)e
πk/a (3.16)

Here we have two choice, either evaluate the integral explicitly or use an alternative trick by utilizing (3.9):5

[bk, b
†
k′ ] =

∫ ∞

0

dω

∫ ∞

0

dω′
√
kk′⋆

ωω′⋆
{F (ω, k)F (−ω′,−k′)

−F (−ω, k)F (ω′,−k′)} [aω, a
†
ω′ ]︸ ︷︷ ︸

δ(ω−ω′)

= δ(k − k′)

using (3.16) and setting k = k′

δ(0) =

∫ ∞

0

dω

∣∣∣∣
k

ω

∣∣∣∣
[
e
2πk/a|F (−ω, k)|2 − |F (−ω, k)|2

]

∫ ∞

0

dω

∣∣∣∣
k

ω

∣∣∣∣|F (−ω, k)|2 =
δ(0)

e2πk/a − 1

Thus,

⟨Nk⟩ =
δ(0)

e2πk/a − 1

We can absorb the delta function by using hard cutoff as:

δ(k − k′) =
1√
2π

∫ ∞

−∞
dxei(k−k′)x

=
1√
2π

lim
L→∞

∫ L

−L

dxei(k−k′)x 1√
2π

5The canonical quantization condition over creation and annihilation operators depends on the convention used for Fourier
transform.
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at k = k′

δ(0) =
V

2π

and then express the particle number in terms of number density.

⟨nk⟩ =
2π

e2πk/a − 1
=

2π

eE/T − 1

where E =
√
k2 +m2|m=0 and we identify T = a/2π. Alternatively, we could also derive the same calculation

using analytic continuation. Let us expand the field in terms the analytically continued basis set:

ϕ(x) =

∫
dk[c

(1)
k h

(1)
k + c

(1)†
k h

(1)⋆
k + c

(2)
k h

(2)
k + c

(2)†
k h

(2)⋆
k ]

The same was originally expressed in terms of rindler coordinates as:

ϕ(x) =

∫
dk[b

(1)
k g

(1)
k + b

(1)†
k g

(1)⋆
k + b

(2)
k g

(2)
k + b

(2)†
k b

(2)⋆
k ]

Therefore, we consider the bogoliubov transformation which connects the b
(1)
k and b

(2)
k with c

(1)
k and c

(2)
k . Since

the transformation matrix considered here is real and symmetric, we can rewrite the relationship between the
creation and annihilation as if: [

g
(1)
k

g
(2)⋆
−k

]
=

[
a11 a12
a21 a22

][
h
(1)
k

h
(2)⋆
−k

]

then,
[
b
(1)
k

b
(2)†
−k

]
=

[
a11 a12
a21 a22

]−1
[
c
(1)
k

c
(2)†
−k

]

Earlier we derived: [
h
(1)
k

h
(2)⋆
−k

]
=

1√
2 sinh(πk/a)

[
eπk/2a e−πk/2a

e−πk/2a eπk/2a

]

︸ ︷︷ ︸a11 a12
a21 a22

−1

[
g
(1)
k

g
(2)⋆
−k

]

Therefore, we get:
[
b
(1)
k

b
(2)†
−k

]
=

1√
2 sinh(πk/a)

[
eπk/2a e−πk/2a

e−πk/2a eπk/2a

][
c
(1)
k

c
(2)†
−k

]

Now, we can evaluate the number density of b
(1)
k modes noting that b

(1)
k |0⟩R = 0 where |0⟩R is the rindler

vacuum. But b
(1)
k |0⟩M ̸= 0 unless |0⟩M and |0⟩R coincide. We note that c

(1)
k |0⟩M = 0, then:

〈
N

(1)
k

〉
= M ⟨0| b(1)†k b

(1)
k |0⟩M

=
1

2 sinh
(
πk
a

)M ⟨0| (eπk/2ac
(1)†
k + e

−πk/2ac
(2)
−k)(e

πk/2ac
(1)
k + e

−πk/2ac
(2)†
−k ) |0⟩M

=
1

2 sinh
(
πk
a

)M ⟨0| e−πk/2ac
(2)†
−k e

−πk/2ac
(2)
−k |0⟩M

=
e−πk/a

2 sinh(πk/a)
M ⟨0| c(2)†−k c

(2)
−k |0⟩M
c
(2)
−kc

(2)†
−k + [c

(2)
−k, c

(2)†
−k ]

=
e−πk/a

2 sinh(πk/a)
M ⟨0| δ(0) |0⟩M

=
e−πk/a

eπk/a − e−πk/a
δ(0)

=
δ(0)

e2πk/a − 1

where we have used [c
(1)
k , c

(2)
k ] = 0, because it can be shown that

〈
h
(1)
k , h

(2)
k

〉
= 0. The above result is to

be thought of as, average value of occupation number of rindler modes b
(1)
k in minkowski vacuum with the

assumption that each observer is sensitive to only one kind of modes.
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3.6 Hawking Radiation

We start from Eddington Finkelstein coordinate with a slight difference in how we define the tortoise coordinate.

r⋆ = r + 2GM ln
( r

2GM
− 1
)
− 2GM

The metric with this redefinition, u = t− r⋆ and v = t+ r⋆, takes the form of:

ds2 = −
(

1 − 2GM

r

)
dudv + r2dΩ

= −2GM

r

( r

2GM
− 1
)
dudv + r2dΩ

= −2GM

r
eln(

r/2GM−1)dudv + r2dΩ

= −2GMe1−r/2GM

r
e
v−u/4GMdudv + r2dΩ (3.17)

If we define6:[11]

dU = e
−u/4GMdu dV = e

v/4GMdv

we get:

ds2 = −2GM

r
e1−

r/2GMdUdV + r2dΩ2 (3.18)

In the near horizon limit:

ds2 = dUdV

so the Kruskal vacuum is the appropriate one for an observer sitting next to the black hole horizon. On the
other hand, since Kruskal–Szekeres coordinates cover the whole of spacetime, they correspond to the Minkowski
vacuum that we studied in the quantization of a scalar field in Rindler space. In the asymptotic limit:

ds2 = −dt2 + dr2 + r2dΩ

Therefore, we assume the existence of two observer, one locally inertial observer and the other static or accel-
erated observer near the horizon. From (3.17) and (3.18), we have:

−2GM

r
e
1−r/2GMe

v−u/4GMdudv + r2dΩ = −2GM

r
e1−

r/2GMdUdV + r2dΩ2

Near the horizon,
e
v−u/4GMdudv + r2dΩ = dUdV + r2dΩ2

The above expression is similar to (3.7), therefore, the rest of the steps are same as in Unruh radiation with
the replacement

a =
1

4GM
u+ = v u− = u

x+ = V x− = U

in equation (3.8). Therefore, the temperature of the black hole is then, given as:

T =
1

8πGM

In this chapter, we only studied the field theory in curved spacetime where we had, atleast locally, a timelike
killing vector and still we observed that vacuum was not invariant. In the next chapter we will learn the same
physics but in the absence of timelike killing vector.

6In the popular literature, it is often defined like dU = −1
4GM

e−u/4GMdu and dV = 1
4GM

ev/4GMdv
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Chapter 4

Gravitational Particle Production

In quantum field theory on Minkowski spacetime, Poincaré symmetry is crucial for defining the vacuum state,
which forms the basis for constructing physical states. The vacuum in flat spacetime is defined as a trans-
lationally invariant state that is annihilated by all generators of the Poincaré group.[12] However, in curved
spacetime, especially that of expanding universe, this definition does not hold because there is no global timelike
Killing vector field. This means we need to find another way to define the vacuum.

One widely accepted method is based on the instantaneous diagonalization of the Hamiltonian.[13] The free
field is expanded as

ϕk(η) = fk(η)ak + f∗k (η)a†k,

where fk(η) are the mode functions. To define the vacuum, this mode decomposition is substituted into
the Hamiltonian. At each instant, the Hamiltonian is diagonalized, and the mode functions that solve the
equations of motion while minimizing the eigenvalue of the Hamiltonian are chosen. The operator coefficients
corresponding to these mode functions are interpreted as annihilation operators and its hermitian conjugate
the creation operator.

The state annihilated by annihilation operator, associated with the selected mode, defines the vacuum state
at that instant. The creation operator corresponding to the same mode is then used to construct a basis set
spanned by the current vacuum. All other states are generated by the action of the creation operator on the
vacuum state.

This framework provides a natural way to discuss gravitational particle production, where the absence of
global symmetry in curved spacetime leads to effects like particle creation from the vacuum. A useful analogy
is the forced harmonic oscillator, where the dynamic spacetime background acts as an external driving force.
For instance, the Bernard and Duncan model illustrates how gravity can create particles, offering insights into
the interaction between quantum fields and curved spacetime.

4.1 Forced Harmonic Oscillator

We will briefly review the key features of Forced Harmonic Oscillator which makes them relevent for understand-
ing particle production in cosmological scenario. Similar technique is employed for studying the gravitational
particle production. The Hamiltonian for forced harmonic oscillator in quantum mechanics is given as

H =
p2

2
+

1

2
ω2x2 − J(t)x

The equation of motion becomes:
ẍ+ ω2x = J(t)

In quantum mechanics, the coordinate x and the momentum px take the role of operators x̂ and p̂x satisfying
the equal time commutation relation [x̂, p̂x] = i. The equation of motion then, in Heisenberg Picture is given
as:

iℏ
dx̂

dt
= [x̂, H] = p̂

iℏ
dp̂x
dt

= [p̂x, H] = −ω2x̂+ J(t)
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Similar to free harmonic oscillator treatment in quantum mechanics, we introduce the following ladder operator
(also known as creation and annihilation operator in field theory) as:

a =

√
ω

2

[
x̂+

i

ω
p̂

]

a† =

√
ω

2

[
x̂− i

ω
p̂

]

They satisy
[a, a†] = i

at each instant of time t. Now, the equation of motion for a and a† is given as:

dâ

dt
= −iωâ+

i√
2ω
J(t)

dâ†

dt
= iωâ† − i√

2ω
J(t)

They can be integrated to give:

â(t) =

[
â(t = 0) +

i√
2ω

∫ t

0

eiωt′J(t′)dt′
]
e−iωt

â†(t) =

[
â†(t = 0) − i√

2ω

∫ t

0

e−iωt′J(t′)dt′
]
eiωt

where â(t = 0) and â†(t = 0) are operator valued constants of integration. Substituting back and simplifying,

H =
ω

2
(â†â+ ââ†) − â† + â√

2ω
J(t)

We will now consider a simplified case where J(t) only acts during the interval 0 < t < T and vanishes outside.
We will not any assume the exact form of J(t) here but give the schematic form as follows:

in

0

J(t)

T

out

t

Then,

â(t > T ) =

[
â(t = 0) +

i√
2ω

∫ T

0

eiωt′J(t′)dt′
]
e−iωt

= [â(t = 0) + J0]e−iωt

â†(t > T ) =

[
â†(t = 0) − i√

2ω

∫ T

0

e−iωt′J(t′)dt′
]
eiωt

28



= [â†(t = 0) + J∗
0 ]eiωt

We find:
[â(t > T ), â†(t > T )] = 1

We adopt the following notation, going forward:

â(t > T ) ≡ âout â(t ≤ 0) ≡ âin

For t < 0:

H =
ω

2
(2â†inâin + 1) = ω

(
â†inâin +

1

2

)

For t > T :

H = ω

(
â†inâin + J0â

†
in + J∗

0 âin + |J0|2 +
1

2

)
= ω

(
â†outâout +

1

2

)

We see that the Hamiltonian which was diagonal for t < 0 is no longer diagonal in âin. This is where the idea
of bogoliubov transformation comes in, which finds the new basis defined by new creation and annihilation
operator diagonalizing the Hamiltonian. The state which get annihilated by âout are the new vacuum. The old
vacuum

âout |0⟩in = (âin + J0) |0⟩in = J0 |0⟩in
From this we understand that the two creation and annihilation operator in two different region define their
own vacuum which are distinct from each other. This is also one of the reason why we can not use the standard
S matrix formalism as that requires the initial and final vacuum to only differ by a phase factor. Initially,

in ⟨0|H |0⟩in =
ω

2

Finally,

in ⟨0|H |0⟩in =in ⟨0|ω
[

1

2
+ â†outâout

]
|0⟩in

= ω

[
1

2
+ |J0|2

]

Notice that the |0⟩in is no longer the lowest-energy state as t ≥ T . This occurs when the system’s energy varies
in response to the external force J(t). Subtracting the zero point energy ω/2, we discover that the initial ground

state is now in an excited state with energy |J0|2ω. In the absence of this force, âin = âout, thus the state |0⟩in
always describes the vacuum state.

The motivation for considering the forced harmonic oscillator before going into particle creation models in
curved spacetime is that we can think of quantum fields as a set of harmonic oscillators. A free field can be
treated as a set of infinitely many free harmonic oscillators, whereas in curved spacetime, the fields have to be
thought of as a collection of forced harmonic oscillators. This has the implication that initial ground state of
harmonic oscillators when interpreted as vacuum state with no particle, turns into excited state due to action
of external force is interpreted as state with particles. So the action of time dependent source changes the
definition of vacuum. This is the mechanism used in particle production in the presence of time dependent
background.

4.2 Particle creation in Bernard and Duncan Model

According to the equivalence principle, the physics for an accelerated observer and an observer in curved
spacetime are equivalent. Therefore, it is natural to investigate the same phenomenon in curved spacetime. We
already explored one part of that problem in Schwarzschild spacetime. In this chapter, we start with a simpler
model where the time-dependent metric is Minkowskian at t = ±∞ and is varying in between. We will learn
that the vacuum state at t = −∞ evolves into a non-vacuum state at t = +∞ similar to what we just saw in
the case of forced harmonic oscillator. The metric tensor in FLRW spacetime is given as:

ds2 = dt2 − a2(t)dx2,

where the a(t) is the scale factor and it determines the expansion behavior of the universe. It is much easier to
perform calculations in the conformal coordinates where all the spacetime axes scale in same manner. To this
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motivation, we define a new time parameter η, called conformal time, as dη = dt/a(t). In the new coordinates,
the metric becomes

ds2 = a2(η)(dη2 − dx2) = C(η)(dη2 − dx2),

and C(η) = a2(η) is defined to be the new conformal scale factor. For the rest of the part, we make the following
choice for the conformal scale factor[14]:

C(η) = A+B tanh(ρη),

where A,B and ρ are constants. A conformal scale factor is asymptotically Minkowskian in the limit η → ±∞
since

lim
η→±∞

C(η) = A±B.

In region

Out region

A−B

A+B

η

C(η)

Figure 4.1: A qualitative picture of the evolution of the scale factor in conformal time emerges, depicting a
scenario where both the in-region and out-region are flat, but feature distinct metric tensors. For particle
creation to take place, the vacuum has to transform rather than stay invariant under time translation of metric.

The asymptotic behaviour of the conformal scale factor can be seen in the figure 4.1. The static universe
corresponding to η → −∞ is called the in-region, while the static universe corresponding to η → ∞ is called
the out-region. Even though both the in-region and out-region resemble Minkowski spacetime, however, as we
will see, the definition of vacuum in both of them will be different.

Introducing a scalar field

The equation of motion for massive scalar field is given as:

(□ +m2)ϕ(x, η) = 0 (4.1)

We introduce a complete set of orthonormal mode solutions uk(x, η) of above in conformal coordinates, that
obey the properties

(uk, ul) = δkl,

(u∗k, u
∗
l ) = −δkl,

(uk, u
∗
l ) = 0.

The mode expansion of scalar field ϕ(x, η) can be given as:

ϕ(x, η) =
∑

k

[
akuk(x, η) + a†ku

∗
k(x, η)

]
,

where ak and a†k are annihilation and creation operators, respectfully.
Since we have assumed spacetime to be isotropic and homogeneous, a natural separation of mode function

into space and time part for the scalar mode functions uk is given as:

uk(x, η) =
1√
2π
eikxχk(η) (4.2)

Substituting the mode functions (4.2) into equation of motion (4.1):

d2

dη2
χk(η) +

[
k2 + C(η)m2

]
χk(η) = 0,
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This differential equation can be solved in terms of hypergeometric functions, however, our interest is limited
to the form of solution in the in-region (η → −∞). The solution is given as[14]:

lim
η→−∞

uink (x, η) =
1√

4πωin
eikx−iωinη, ωin = [k2 +m2(A−B)]1/2

The mode function for the out-region are:

lim
η→∞

uoutk (x, η) =
1√

4πωout
eikx−iωoutη, ωout = [k2 +m2(A+B)]1/2

If the particles were massless, then we would have not observed any particle production. Since, the two mode
functions in the different static regions are clearly different for massive particles, we will observe particle
production. Instead of expressing âout in terms of linear combination of âin and â†in, we will follow a slightly
different approach. We will express uink (x, η) as a linear combination of the real and imaginary part of uoutk (x, η):

uink (x, η) = αku
out
k (x, η) + βku

out∗
k (x, η).

To find the Bogoliubov coefficients αk and βk, we use the full solution:

uink (x, η) =
1√

4πωin
ei{kx−ω+η−ω−

ρ ln[2 cosh(ρη)]}
2F1

(
1 +

iω−
ρ
,
iω−
ρ
, 1 − iωin

ρ
;

1

2
[1 + tanh(ρη)]

)

uoutk (x, η) =
1√

4πωout
ei{kx−ω+η−ω−

ρ ln[2 cosh(ρη)]}
2F1

(
1 +

iω−
ρ
,
iω−
ρ
, 1 +

iωout

ρ
;

1

2
[1 − tanh(ρη)]

)

where

ω± =
1

2
(ωout ± ωin)

We explicitly make use of the following properties of hypergeometric functions1.

2F1(a, b, c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b, 1 + a+ b− c; 1 − z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1(c− a, c− b, 1 + c− a− b; 1 − z)

2F1(a, b, c; z) = (1 − z)c−a−b
2F1(c− a, c− b, c; z)

we find

αk =

(
ωout

ωin

)1/2
Γ(1 − iωin/ρ)Γ(−iωout/ρ)

Γ(−iω+/ρ)Γ(1 − iω+/ρ)
, (4.3)

and

βk =

(
ωout

ωin

)1/2
Γ(1 − iωin/ρ)Γ(iωout/ρ)

Γ(iω−/ρ)Γ(1 + iω−/ρ)
e2ikx (4.4)

Using Eqs. (4.3) and (4.4) and Euler’s reflection formula for Gamma function, we find:

|αk|2 =
sinh2(πωout/ρ)

sinh(πωin/ρ) sinh(πωout/ρ)

and

|βk|2 =
sinh2(πω−/ρ)

sinh(πωin/ρ) sinh(πωout/ρ)
.

we can check that it satisfies the normalization condition

|αk|2 − |βk|2 = 1

The mean paricle density in the out mode would be given as:

in ⟨0|nk |0⟩in = |βk|2

This is to be interpreted as following: the |0⟩in are not populated with in modes but only out-modes. As such,
we need detector for out-mode to see particles in the |0⟩in vacuum.

1using ωout = 2ω± ∓ ωin, and ωin + ω− = ωin + 1
2
(ωout − ωin) =

2ωin+ωout−ωin
2

= ωout+ωin
2

= ω+
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x0

xd

xi

θ
=

0

τ = π

θ
=
π

τ = 0

Figure 4.2: The embedding and penrose diagram of de Sitter spacetime. Shaded region depicts region of de
Sitter spacetime observable to an observer at south pole θ = π. The dark shaded region is the static patch, it
is the intersection between the region of space that can affect the observer and the region that can be affected
by them.

4.3 Particle Production in de Sitter Space

In this section, we will expand our understanding by exploring the effects of gravity on particle production in
de Sitter space. In contrast to the previous section where we studied field theory in a conformally flat FLRW
universe, we will now examine the impact of the gravitational field on particle production in de Sitter space.
As we discussed earlier, in the context of a massless scalar field in a conformally flat spacetime, there was no
particle creation. However, this section will reveal that even massless scalars can experience particle production
in de Sitter space due to the presence of the de Sitter horizon. To begin our investigation, we will first consider
massless scalar fields.

Massless Scalar field in deSitter space

The metric tensor during inflation is approximately that of de Sitter space (a(t) ≈ eHt) in flat slicing is given
as:

ds2 = −dt2 + a(t)2dx⃗2

=
1

H2η2
(−dη2 + dx⃗2)

where we defined conformal time as dη = dt/a(t) = −d(e
−Ht

/H). The Lagrangian for classical scalar field is given
as:

L =
√−g

[
1

2
gµν∂µϕ∂νϕ− 1

2
m2ϕ2 − V (ϕ)

]
(4.5)

The equation of motion becomes:

□ϕ+m2ϕ+ V ′(ϕ) = 0

for massless and free theory, we have m = 0 and V (ϕ) = 0:

□ϕ = ∂µ∂
µϕ = 0

1

a

(
∂

∂η

1

a

)
∂ϕ

∂η
+

1

a2
∂2ϕ

∂η2
+

3H

a

∂

∂η
ϕ− 1

a2
∇2ϕ = 0

using a = −1/ηH

1

a2
∂2ϕ

∂η2
+

2H

a

∂ϕ

∂η
− 1

a2
∇2ϕ = 0
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Thus,

H2η2
∂2ϕ

∂η2
− 2H2η

∂ϕ

∂η
−H2η2∇2ϕ = 0

In momentum space:2

ϕ̈k⃗ − 2

η
ϕ̇k⃗ + k2ϕk⃗ = 0

where ˙ means derivative with respect to η. It has the solution of the form:3

ϕk = c1
H√
2k3

(1 − ikη)eikη

︸ ︷︷ ︸
fk

+c2
H√
2k3

(1 + ikη)e−ikη

︸ ︷︷ ︸
f̄k

with the normalization of mode function, chosen so that

f̄k(∂tfk) − (∂tf̄k)fk = −Hη[f̄k(∂ηfk) − (∂η f̄k)fk]

= −iH3η3

with the choice of inner product in curved spacetime given as:

⟨f, g⟩ = i

∫
d3x
√
|h|{f⋆(∂tg) − (∂tf

⋆)g} = ⟨g, f⟩⋆ = −⟨g⋆, f⋆⟩

we get (with the x−dependence of mode function coming from eik⃗·x⃗):

⟨fk, fk′⟩ = i

∫
d3x

H3η3
×−iH3η3e−i(k⃗−k⃗′)·x⃗ = (2π)3δ(k⃗ − k⃗′)

Before we discuss the alternative derivation of the mode function, It’d be better to discuss the time evolution
of superhorizon modes characterized by k << aH:

∂2ϕ

∂t2
+ 3H

∂ϕ

∂t
− 1

a2
∇2ϕ = 0

in momentum space

∂2ϕ

∂t2
+ 3H

∂ϕ

∂t
+

1

a2
k2ϕ = 0

In the limit k/a << H =⇒ kη << 1 =⇒ kη → 0, the mode function becomes constant. However, from EOM
we get:

∂2ϕ

∂t2
+ 3H

∂ϕ

∂t
= 0 =⇒ ϕ = A

e−Ht

H
+B

We see that modes outside the comoving horizon suffer exponential decay and eventually as η → 0 it become
constant. The second way to derive the mode function is via redefinition ϕk⃗ = −Hηuk⃗4. Then, we get:

ϕ̈k⃗ − 2

η
ϕ̇k⃗ + k2ϕk⃗ = 0

−H ∂

∂η

(
uk⃗ + ηu̇k⃗

)
+

2H

η

(
uk⃗ + ηu̇k⃗

)
− k2Hηuk⃗ = 0

ük⃗ +

(
k2 − 2

η2

)
uk⃗ = 0

2we have dropped the eik⃗·x⃗ factors
3for continuous case:

ϕ(x, η) =

∫
dk[ckfke

ik⃗·x⃗ + c.c]

for descrete case:
ϕ(x, η) =

∑
k

ck fke
ik⃗·x⃗︸ ︷︷ ︸

fk(x)

4because we don’t know ϕ̇ at infinite past, so we’d like to get rid of it before we can take the limit
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which is much easier to solve. It has the solution given as:

uk⃗ =
1√
2k

(
1 ± i

kη

)
e±ikη

In the early time limit η → −∞, which essentially turns the de Sitter Klein Gordon Equation into Minkowski
one. We have

ük⃗ +

(
k2 −

�
�
��
0

2

η2

)
uk⃗ = 0

ük⃗ + k2uk⃗ = 0 (4.6)

which has the solution

uk⃗ =
1√
2k
e±ikη

where we have chosen the overall normalization, so that the solutions have Wronskian ±i. So that the mode
functions at infinite past are orthonormal i.e. ⟨uk⃗, uk⃗′⟩ = (2π)3δ(k⃗ − k⃗′). At late time (η → 0), we can ignore
terms independent of η:

ük⃗ +

(
k2 − 2

η2

)
uk⃗ = 0

ük⃗ − 2

η2
uk⃗ = 0

Hence, the solution would be:
uk⃗(x, η) = uk⃗(x)η−1 + uk⃗(x)η2

Therefore, we can express the field at late time as:

ϕk⃗ ≈
∑

∆=0,3

O∆(x)η∆ (4.7)

where

∆ =
d

2
±
√
d2

4
− m2

H2

for general mass.

Particle Production

In the infinite past we defined the mode function as positive energy solution (minkowski mode)5, we can express
the field in de Sitter space at some finite η as:

ϕk = bkuk + b†ku
⋆
k

with {bk, b†k}, a new set of creation and annihilation operators which defines the new vacuum as bk |0⟩ = 0. The
bunch davis mode function is given as:

uk =
1√
2k

(
1 − i

kη

)
e−ikη

and

1√
2k

(
1 − i

kη

)
e−ikη =

[
1 − i

kη
− 1

2

(
1

kη

)2
]

1√
2k
e−ikη +

1

2(kη)2
e−2ikη 1√

2k
eikη

with
α = 1 − i

kη − 1
2(kη)2

β = 1
2(kη)2 e

−2ikη

}
|α|2 − |β|2 = 1

Assuming, at early time, the total number nminkowski is

nminkowski = 0

However, at later time, the number density, n
BD

, of massless particles in de Sitter space is given as:

n
BD

= |β|2 =
1

4k4η4
̸= 0

This is another indication of particle production in expanding spacetime.
5which is equivalent to choosing Bunch Davis vacuum
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Chapter 5

CMB as particle detector

In particle physics, colliders like the Large Hadron Collider (LHC) allow us to probe the properties of fun-
damental particles at incredibly high energies. One key aspect of this research is looking for certain peaks
which confer the existence of particle. The discipline of collider physics involves going from the direct collider
observables to the underlying lagrangian of the theory.

Mass: from resonance

Image: ATLAS

Figure 5.1: The invariant mass distribution of dipho-
ton events recorded by the ATLAS detector, showing
a clear excess near 125 GeV. This “bump” represents
the signature of a new particle, later confirmed to be
the Higgs boson, as predicted by the Standard Model.

Figure 5.2: Illustration of different types of non-
Gaussianity originating from the quantum fluctuation
during inflation. The diagram shows the feynman
diagrammatic view of how the inflaton perturbation
seed the region of overdensity and underdensity. Time
flows in the upward direction.

One of the simplest questions one can ask is how to recognize the presence of new particles. In collider
Physics, the answer lies in the certain peaks in cross section near the mass scale of intermediate particles.
The spin information could be extracted by studying the angular distribution of scattering process. In the
cosmological case, instead of peak invariant mass distribution corresponding to the mass of the particle, one
finds that the higher-order correlations oscillate when the distance between correlated points varies, and they
do so with a frequency given by the mass of the new particle.

In the same spirit, cosmological collider physics proposes to use the cosmic microwave background radiation
(CMB) as a “detector” to study non-gaussianity in the early universe, effectively “colliding” new particles that
arose from quantum fluctuations during inflation[6]. These particles would not necessarily be ordinary matter
but rather new particles that arose from the quantum fluctuations during inflation.

In particular, cosmological collider physics allows us to study the properties of new particles that arise
from quantum fluctuations during inflation such as their mass and spin. These particles could have masses
comparable to the Hubble scale or even be massless fields that arose during this era. By studying the non-
gaussianity present in the primordial fluctuation spectrum, we can effectively reconstruct the history of particle
production and decays during this era, gaining insights into the properties and interactions of these particles.

Furthermore, cosmological collider physics provides an alternate approach to test theories of inflation and
the early universe. The standard model of cosmology is based on the assumption that the universe underwent
an exponential expansion during the era of inflation. However, this expansion could have been driven by a
variety of different mechanisms, including the presence of new particles or fields. However by analyzing these
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HEP at Higher Energies?

Collider Built by Nature?

What’s needed as a “collider”?

HEP process:

Create heavy particles

Let them interact

Long-lived

signals
Detectors

HEP at Higher Energies?

Collider Built by Nature?

What’s needed as a “collider”?e.g. LHC
leptons,

photons, jets e.g. ATLAS, CMS

Man-made colliders

HEP at Higher Energies?

Collider Built by Nature?

What’s needed as a “collider”?

Inflation of the

very early universe

𝑎 𝑡 ∝ exp(𝐻𝑡)

𝑇𝐺𝐻 ∼ 𝐻 is up to 1013GeV

Classical conserved 

quantities, such as:

curvature pert 𝜁

PGW 𝛾𝑖𝑗, isocurvature

Cosmological

observations, e.g.

CMB, LSS, 21cm

The cosmological collider

Figure 5.3: A comparision between the cosmological collider and man-made collider to highlight the difference.

statistical signatures left behind in the CMB, we can gain insights into which models are most consistent with
observations and which theories predict the correct level of non-gaussianity.

Since, we can not use the S-matrix formalism, we will employ the in-in formalism described in section
2.1.1 for calculating the correlation functions. We assume that Inflation can be modelled by perfect de Sitter
spacetime and we ignore any deviation away from it. Therefore, we will now proceed to study the correlation
function at the end of Inflation.

5.1 Two Point Function

The two-point correlation function is the cornerstone of cosmological perturbation theory and the primary
observable in the study of primordial fluctuations. It captures the statistical distribution of curvature per-
turbations in the early universe and directly determines the angular power spectrum of the cosmic microwave
background (CMB).

In the simplest inflationary models with a single scalar field slowly rolling in a nearly de Sitter background,
quantum fluctuations of the field are nearly Gaussian and statistically isotropic. As a result, the full statistical
content of these perturbations is encoded in the two-point function alone, with higher-order correlators vanishing
in the absence of interactions.

η = 0
x1 x2

Figure 5.4: in-in Feynman diagrams for equal time two
point function on the reheating surface

In this section, we compute the two-point function of
a scalar field in an inflationary background using the
in–in formalism. Starting from the mode expansion
of the field and the assumption of the Bunch-Davies
vacuum, we derive the standard expression for the
power spectrum of inflaton perturbations.

While the two-point function provides the leading-
order statistical prediction of inflation, it is inherently
limited in the amount of physical information it can
convey. It is insensitive to the presence of interactions
or heavy particle content unless those effects modify the vacuum state or the effective mass of the inflaton. For
this reason, the study of higher-order correlation functions—such as the bispectrum and trispectrum—becomes
essential for probing beyond the minimal inflationary model. But before turning to those, we establish the
baseline result: the two-point function and the resulting power spectrum.

The two point correlation function for scalar field in de Sitter spacetime in momentum space at late time
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(or small η, η′ behavior)1 can be expressed in terms of this mode function as:

〈
ϕk⃗(η)ϕk⃗′(η

′)
〉

= (2π)3δ3(k⃗ + k⃗′) f⋆
k⃗
fk⃗

The mode function in momentum space is given as:

fk = H

√
π

2
e−

i
4π(1+2ν)(−η)

3/2H(2)
ν (−kη) (where ν =

√
9
4 − m2

H2 )

if ν is real

⟨ϕk⃗(η)ϕ−k⃗(η′)⟩′ =
H2π

4
(ηη′)

3/2 lim
kη→0

[
H(2)

ν (−kη)H(2)
ν (−kη′)⋆︸ ︷︷ ︸
H

(1)
ν (−kη′)

]

=
H2π

4
(ηη′)

3/2 i

π

[
Γ(ν)

(−kη
2

)−ν

+ eiπνΓ(−ν)

(−kη
2

)ν
]

× −i
π

[
Γ(ν)

(−kη′
2

)−ν

+ eiπνΓ(−ν)

(−kη′
2

)ν
]

≈ H2

4π
(ηη′)

3/2

[
Γ(ν)2

(
k2ηη′

4

)−ν

+ Γ(−ν)2
(
k2ηη′

4

)ν
]

+ terms

if ν is imaginary

⟨ϕk⃗(η)ϕ−k⃗(η′)⟩′ =
H2π

4
(ηη′)

3/2e−iπν lim
kη→0


H(2)

ν (−kη) H(2)
ν (−kη′)⋆︸ ︷︷ ︸

eiπνH
(1)
ν (−kη′)




=
H2π

4
(ηη′)

3/2e−iπν i

π

[
Γ(ν)

(−kη
2

)−ν

+ eiπνΓ(−ν)

(−kη
2

)ν
]

× −ieiπν
π

[
Γ(ν)

(−kη′
2

)−ν

+ e−iπνΓ(−ν)

(−kη′
2

)ν
]

≈ H2

4π
(ηη′)

3/2

[
Γ(ν)2

(
k2ηη′

4

)−ν

+ Γ(−ν)2
(
k2ηη′

4

)ν
]

+ terms (5.1)

For massive particles m > 3
2H, we can have imaginary ν, which will show oscillatory behavior at late time

signifying particle creation in de Sitter space. The complex conjugate of Hankel function is given as:

H
(2)⋆
iµ = e−πµH

(1)
iµ

Then,

lim
kη→0

∣∣∣H(2)
ν (−kη)

∣∣∣
2

= e−πµ lim
kη→0

H(2)
ν (−kη)H(1)

ν (−kη)

=
e−πµ

π2

(
Γ(iµ)2

(−kη
2

)−2iµ

+ Γ(−iµ)2
(−kη

2

)2iµ

− 2π cot(πµ)

iµ

)
,

and the late-time limit of the power spectrum is

lim
kη→0

Pϕ(η, k) = lim
kη→0

⟨ϕk⃗(η)ϕ−k⃗(η′)⟩′ = lim
kη→0

∣∣fk⃗(η)
∣∣2

=
π

4
eπµH2(−η)3 lim

kη→0

∣∣∣H(2)
ν (−kη)

∣∣∣
2

=
1

4π
H2(−η)3

(
Γ(iµ)2

(−kη
2

)−2iµ

+ Γ(−iµ)2
(−kη

2

)2iµ

+
2π coth(πµ)

µ

)
.

1It is these late-time statistics that are relevant for our Universe. The fluctuations generated during inflation that survive until
late times are the things that serve as the initial conditions for the evolution of the universe at the onset of the hot Big Bang.
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Writing Γ(±iµ) ≡ |Γ(±iµ)| e±iδ, and using

|Γ(±iµ)|2 =
π

µ sinh(πµ)
,

we can write this as

lim
kη→0

Pϕ(η, k) =
H2(−η)3

4µ sinh(πµ)

[
eiδ(µ)

(−kη
2

)−2iµ

+ e−iδ(µ)

(−kη
2

)2iµ

+ 2 cosh(πµ)

]

=
H2(−η)3

2µ sinh(πµ)

[
cos

(
2µ log

(−kη
2

)
− δ

)
+ cosh(πµ)

]
.

For large masses, µ ≫ 1, the power spectrum scales as 1/ sinh(πµ) → e−πµ, corresponding to the Boltzmann
suppression of the spontaneous production of massive particles. It is also interesting to consider the correlator
in the limit |η| << |η′| and for |x⃗− x⃗′| = 0:

⟨ϕ(η, x⃗)ϕ(η′, 0⃗)⟩′ = H2 Γ
(
3
2 + iµ

)
Γ
(
3
2 − iµ

)

(4π)2
2F1

(
3

2
+ iµ,

3

2
− iµ, 2; 1 − −(η − η′)2 + x⃗2

4ηη′

)

Taking the limit:

= H2 Γ
(
3
2 + iµ

)
Γ
(
3
2 − iµ

)

(4π)2

[(
4ηη′

η′2

) 3
2+iµ

Γ(2)Γ(−2iµ)

Γ
(
3
2 − iµ

)
Γ
(
1
2 − iµ

) + c.c.

]

=
H2

4π5/2

[(
η

η′

) 3
2+iµ

Γ(−iµ)Γ

(
3

2
+ iµ

)
+

(
η

η′

) 3
2−iµ

Γ(iµ)Γ

(
3

2
− iµ

)]
+ · · ·

if we used the iϵ prescription inside hypergeometric function, then we would have ended with:

⟨ϕ(η, 0)ϕ(η′, 0⃗)⟩′ =
H2

4π5/2

[(
η

η′
e−iπ

) 3
2+iµ

Γ(−iµ)Γ

(
3

2
+ iµ

)
+

(
η

η′
e−iπ

) 3
2−iµ

Γ(iµ)Γ

(
3

2
− iµ

)]
+ · · ·

η = 0This extra eiπ gives factors of e±πµ, which imply that the first term in above is now
not suppressed exponentially for large µ while the second term is suppressed by e−2πµ.
The first term is the one expected where we create a particle at η0 and destroy it at
η > η0.

5.2 Three Point function

η = 0

Figure 5.5: In-in feyn-
man diagram of three
point function with
two scalar field and
one vector field or
massive field.

We used the in-in formalism to calculate the two-point function in the preceding section.
In this part, we will follow an alternate approach to calculate the three-point function
purely from a symmetry perspective. Since this approach is highly constraining, we
will use it to calculate the three-point function at late times, where two of the fields are
scalar fields, and the third is a tensor field. Our goal is to construct an invariant that
respects the constraints imposed by the late time isometries of de Sitter spacetime,
which correspond to conformal symmetry. We use Embedding Space formalism for
deriving the three point function of two scalar and one vector field respecting conformal
symmetry. On the null cone we will have

⟨ϕ1(X1)ϕ2(X2)JM (X3)⟩ =
WM

(−2X1 ·X2)α123(−2X1 ·X3)α132(−2X2 ·X3)α231

where the powers αijk of the scalar factor are determined by the dilatation as in case
of scalar operators and the tensor structure WM equals to

WM =
(−2X2 ·X3)X1M − (−2X1 ·X3)X2M − (−2X1 ·X2)X3M

(−2X1 ·X2)
1
2 (−2X1 ·X3)

1
2 (−2X2 ·X3)

1
2

.

which satisfies:

(X1)MWM = 0

(X2)MWM = 0
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(X3)MWM = 0

The relative sign between terms in the expression for WM is fixed by transversality and the scaling behavior of
correlation function under dilatation is completely determined in the scalar part so the tensor structure have
scaling 0 in all variables (X → λX =⇒ Wµ → λ0Wµ). Projecting to physical space as:

⟨ϕ1(x1)ϕ2(x2)Jµ(x3)⟩ =
∂XM

3

∂xµ3
⟨ϕ1(X1)ϕ2(X2)JM (X3)⟩

we find, as explicitly computed before,

∂XM
3

∂xµ3
XiM = (xi − x3)µ, i = 1, 2

−2Xi ·Xj = (xi − xj)
2, i = 1, 2, 3 (i < j),

so that we end up with the tensor structure

Wµ =
|x2 − x3|2(x1 − x3)µ − |x1 − x3|2(x2 − x3)µ

|x1 − x2||x1 − x3||x2 − x3|
=

|x23|2(x13)µ − |x13|2(x23)µ
|x12||x13||x23|

Therefore, the three-point function of two scalars and one spin 1 operators in physical space is given by

⟨ϕ1(x1)ϕ2(x2)Jµ(x3)⟩ =

|x23|2(x13)µ−|x13|2(x23)µ
|x12||x13||x23|

|x12|∆1+∆2−∆3 |x13|∆1+∆3−∆2 |x23|∆2+∆3−∆1

=
|x23|2(x13)µ − |x13|2(x23)µ

|x12|∆1+∆2−∆3+1|x13|∆1+∆3−∆2+1|x23|∆2+∆3−∆1+1

Where ∆1,∆2, and ∆3 are the conformal scaling dimension of ϕ1, ϕ2 and Jµ. The three-point function of
higher-spin operators Jµ1...µℓ

is constructed from the above, analogously as what we did for the two-point
functions, since it turns out that Wµ is the only indexed object for three points that is conformal invariant.
The reason why we were able to do this is because the conformal symmetry is so contraining that it only leaves
few possibilities for the correlation function upto some constant. This constant is determined by the dynamics
of the conformal theory.

5.3 Three Point Function of two conformally coupled fields with a
general mass scalar field

In quantum field theory with conformal symmetry, we have two kinds of scalar field. One with mass term
which breaks the conformal invariance and another, a massless scalar field with coupling to gravity given as
Lint = ξRϕ2 respects it. It is natural to wonder about the interaction between them as one respects the
symmetry and another breaks it. We set the conformal scaling dimension ∆1 = ∆2 = 2 and ∆3 = ∆, and
define the following variables

q =
k1 − k2
k3

p =
k1 + k2
k3

which gives us following

∂

∂k1
=

∂p

∂k1

∂

∂p
=

1

k3

∂

∂p
;

∂

∂k2
=

∂p

∂k2

∂

∂p
=

1

k3

∂

∂p
;

∂

∂k3
=

∂p

∂k3

∂

∂p
=
k1 + k2
−k23

= − p2

k1 + k2

∂

∂p

also

∂2

∂k21
=

(
1

k3

)2
∂2

∂p2
;

∂2

∂k22
=

(
1

k3

)2
∂2

∂p2
;

∂2

∂k23
= − p2

k1 + k2

∂

∂p

(
− p2

k1 + k2

∂

∂p

)
=

1

k23

(
2p

∂

∂p
+ p2

∂2

∂p2

)

Next, we will solve the Conformal Ward Identity (CWI) for the conformally coupled scalar fields with the
following ansatz:

⟨ϕ(k⃗1)ϕ(k⃗2)σ∆(k⃗3)⟩ = k∆1+∆2+∆−2d
3 G(q, p)

= k∆−2
3 G(q, p) (where d = 3)
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Using ward identity for special conformal transformation. The generator for SCT takes the following represen-
tation in momentum space:

K̂µ = −
[
2(∆ − d)

∂

∂kµ
− 2kα

∂2

∂kµ∂kα
+ kµ

∂2

∂kα∂kα

]

= kµ

[
−2(∆ − d+ 1)

1

k

∂

∂k
+

∂2

∂k2

]

Since, in our case d = 3, the CWI takes the form of:

b⃗ · k⃗
[
−2(∆ − 2)

1

k

∂

∂k
+

∂2

∂k2

]
⟨ϕ(k⃗1)ϕ(k⃗2)σ∆(k⃗3)⟩

If we assume b⃗ · k⃗3 = 0, then it leads to

(⃗b · K⃗1 + b⃗ · K⃗2)k∆−2
3 G = 0

(
b⃗ · k⃗1

∂2

∂k21
− b⃗ · k⃗1

∂2

∂k23

)
k∆−2
3 G = 0

k∆−2
3 b⃗ · k⃗1(∂2k1

− ∂2k2
)G = 0 =⇒ ∂q∂pG = 0

Assuming, G(q, p) ≡ G(p)

[
b⃗ · K⃗1 + b⃗ · K⃗2 + b⃗ · K⃗3

]
k∆−2
3 G = 0

[
(⃗b · k⃗1 + b⃗ · k⃗2)︸ ︷︷ ︸

=−b⃗·⃗k3

1

k23
∂2p + b⃗ · k⃗3

{
(∆ − 2)(1 − ∆)

k23
+

2p∂p + p2∂2p
k23

}]
k∆−2
3 G = 0

k∆−2
3 [(p2 − 1)∂2p + 2p∂p + (∆ − 2)(1 − ∆)]G = 0

where we used
(
−2(∆ − 3)

1

k

∂

∂k3
+

∂2

∂k23

)
k∆−2
3 G =

(∆ − 2)(1 − ∆)

k23
k∆−2
3 G+

k∆−2
3

k23

(
2p
∂G

∂p
+ p2

∂2G

∂p2

)

The final expression
[(p2 − 1)∂2p + 2p∂p + (∆ − 2)(1 − ∆)]G = 0 (5.2)

is hypergeometric differential equation with poles at p = ±1 and the solution is given as:

G(p) = 2F1

(
2 − ∆,∆ − 1, 1;

1 − p

2

)

We note that the bispectrum has branch point at p = 1,∞. This result will be important in upcoming part.

5.4 Four Point Function in ϕ3 and ϕ4 Theories

In contrast to earlier scenario, where we could calculate three point function purely from symmetry consider-
ations, the four-point functions are no longer uniquely determined by transformation properties alone. This is
because when you have at least four distinct points, you can construct conformally invariant cross-ratios[15].
These cross-ratios are special functions of the points that remain unchanged under all conformal transforma-
tions. For a configuration of four points, we find that there exist exactly two independent cross-ratios.

|x12||x34|
|x13||x24|

;
|x12||x34|
|x23||x14|

As they are not uniquely determined by symmetry constraints, we will therefore use in-in formalism for deriving
the results.

λϕ4 type interaction

We begin by stating the Wightman propagator,

Wk(η, η′) =
H2

2k
(ηη′)e−ik(η−η′)
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Then, the four point function at later time η∗ is given by:

I+ = −iλ
∫ η∗

−∞
DηWk1

(η∗, η)Wk2
(η∗, η)Wk3

(η∗, η)Wk4
(η∗, η)

= −i λ(Hη∗)4

16k1k2k3k4

∫ η∗

−∞
dη ei(k1+k2+k3+k4)η

= − λ(Hη∗)4

16k1k2k3k4(k1 + k2 + k3 + k4)
.

This contribution is again purely real (I+ = I−), so the full correlator is just twice the above answer:

⟨ϕk1
ϕk2

ϕk3
ϕk4

⟩′ = − λ(Hη∗)4

8k1k2k3k4

1

kt

λϕ3 type interaction

We begin by considering a conformally coupled scalar. We can write the Wightman and Feynman propagators
explicitly

Wk(η, η′) = H2ηη′
1

2k
e−ik(η−η′),

GF (k; η, η′) = H2ηη′
1

2k

[
e−ik(η−η′)θ(η − η′) + eik(η−η′)θ(η′ − η)

]

︸ ︷︷ ︸
G

(flat)
F

Notice that these are exactly H2ηη′ times their flat-space counterparts. (This is another manifestation of the
conformal invariance of the conformally coupled scalar.) The I++ contribution is2

I++ ≡ = (−iλ)2
∫ η∗

−∞
Dη′Dη′′Wk1

(η∗, η
′)Wk2

(η∗, η
′)GF (kI ; η′, η′′)Wk3

(η∗, η
′′)Wk4

(η∗, η
′′)

= − λ2H2η4∗
16k1k2k3k4

∫ η∗

−∞

dη′

η′

∫ η∗

−∞

dη′′

η′′
eik12η

′
G

(flat)
F (kI ; η′, η′′)eik34η

′′
,

where, we expressed the second line in terms of the flat-space Feynman propagator. This integral is a bit

tricky to evaluate because it is divergent. As we will see, the divergences in I−− and I++ cancel against similar
divergences in I−+ and I+−. In order to isolate the divergent piece, it is therefore useful to add and subtract
a contribution to the above integral as

I++ = − λ2H2η4∗
16k1k2k3k4

∫ η∗

−∞

dη′

η′

∫ η∗

−∞

dη′′

η′′
eik12η

′

[
G

(flat)
F (kI ; η′, η′′) − 1

2kI
eikI(η

′+η′′)

︸ ︷︷ ︸
G

(flat)
B

+
1

2kI
eikI(η

′+η′′)

]
eik34η

′′

where we have defined

G
(flat)
B (kI ; η′, η′′) = G

(flat)
F (kI ; η′, η′′) − 1

2kI
eikI(η

′+η′′)

We can now perform the integral involving GB via a trick. We note that

−i
∫ ∞

a

dxeixη =
1

η
eiaη,

So we can write

I++ =
λ2H2η4∗

16k1k2k3k4

[ ∫ ∞

k12

dx

∫ ∞

k34

dy

∫ η∗

−∞
dη′dη′′eixη

′
eiyη

′′
G

(flat)
B (kI ; η′, η′′)

connected part

− 1

2kI

∫ η∗

−∞

dη′

η′

∫ η∗

−∞

dη′′

η′′′
ei(k12+s)η′

ei(k34+s)η′′

]

disconnected part

2vertices and propagators below the conformal boundary are time ordered and above the conformal boundar are anti-time
ordered.
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The time integrals in the first line now only involve flat-space quantities and can therefore easily be computed

I(x, y) ≡
∫ 0

−∞
dη′dη′′eixη

′
eiyη

′′
G

(flat)
B (kI ; η′, η′′) = − 1

(x+ y)(x+ kI)(y + kI)

The integral was performed using

∫ η′

−∞
dη′′

∫ 0

−∞
dη′eixη

′
eiyη

′′
e−ikI(η

′−η′′) = − 1

(kI + y)(x+ y)
∫ 0

−∞
dη′′

∫ η′′

−∞
dη′eixη

′
eiyη

′′
eikI(η

′−η′′) = − 1

(kI + x)(x+ y)
∫ 0

−∞
dη′′

∫ 0

−∞
dη′eixη

′
eiyη

′′
eikI(η

′+η′′) = − 1

(kI + x)(kI + y)

We split I++ into two pieces: a “connected” part, I
(c)
++, which is the energy integral of I(x, y), and a “dis-

connected” part, I
(d)
++, which involves integral of terms without time ordering. Performing the integrals of the

connected piece, we get:

I
(c)
++ ≡ λ2H2η4∗

16k1k2k3k4

∫ ∞

k12

dx

∫ ∞

k34

dy I(x, y)

=
λ2H2η4∗

32k1k2k3k4kI

[
Li2

(
E − EL

E

)
+ Li2

(
E − ER

E

)
+ log

(
EL

E

)
log

(
ER

E

)
− π2

6

]

where Li2 is the dilogarithm and we define the variables EL ≡ k12 +kI (the energy flowing into the left vertex),
ER ≡ k34 + kI (same for the right vertex) and the total energy E ≡ k12 + k34 = kt. We now calculate the
disconnected part:

I
(d)
++ ≡ − λ2H2η4∗

32k1k2k3k4kI

∫ η∗

−∞

dη′

η′
ei(k12+s)η′

∫ η∗

−∞

dη′′

η′′
ei(k34+s)η′′

= − λ2H2η4∗
32k1k2k3k4kI

log(iELη∗) log(iERη∗) (5.3)

This contribution diverges in the limit η∗ → 0, which is why we split it off from I
(c)
++. These divergences cancel

with the I∓± pieces, so everything is finite. Using the Feynman rules, we find

I+− ≡ = λ2
∫ η∗

−∞
Dη′Dη′′Wk1

(η∗, η
′)Wk2

(η∗, η
′)WkI

(η′′, η′)Wk3
(η′′, η∗)Wk4

(η′′, η∗)

=
λ2H2η4∗

32k1k2k3k4kI

∫ η∗

−∞

dη′

η′
ei(k12+kI)η

′
∫ η∗

−∞

dη′′

η′′
e−i(k34+kI)η

′′

=
λ2H2η4∗

32k1k2k3k4kI
log(iELη∗) log(−iERη∗) (5.4)

In the last line, we evaluated the integrals, noting that the different iϵ prescriptions required for convergence
of the integrals lead to different signs of the arguments of the log for the η′ and η′′integrals. Adding (5.3) to
(5.4)we get,

I
(d)
++ + I+− =

λ2H2η4∗
32k1k2k3k4kI

(−π log(iELη∗)) (5.5)

The sum of the I
(d)
−− and I−+ contributions gives the complex conjugate of (5.5). Putting everything together,

we therefore find

I
(d)
++ + I+− + I

(d)
−− + I−+ =

λ2H2η4∗
32k1k2k3k4kI

π2 (5.6)

Adding it all, the full correlator is3

⟨ϕk⃗1
ϕk⃗2

ϕk⃗3
ϕk⃗4

⟩′ = 22(I++ + I+− + c.c.)

3The reason for symmetry factor is absense of 3! in Lint and because we have fixed the intermediate particle being exchanged.
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= 22
λ2H2η4∗

16k1k2k3k4kI

[
Li2

(
E − EL

E

)
+ Li2

(
E − ER

E

)
+ log

(
EL

E

)
log

(
ER

E

)
+
π2

3

]

=
λ2H2η4∗

4k1k2k3k4kI

[
Li2

(
k12 − kI

kt

)
+ Li2

(
k34 − kI

kt

)
+ log

(
k12 + kI

kt

)
log

(
k34 + kI

kt

)
+
π2

3

]

(5.7)

When kI → 0, we have

⟨ϕk⃗1
ϕk⃗2

ϕk⃗3
ϕk⃗4

⟩′ ≈ λ2H2η4∗
8k1k2k3k4

[
π2

kI
− 2

kI
k12k34

+ · · ·
]

We are interested in these terms because they give rise to interesting power law behavior in position space. In
position space, there are further contribution to the Operator Product Expansion limit.

⟨φ(x⃗1) · · ·φ(x⃗4)⟩ ∝ 1

x213x
2
24

1

(z − z̄)

[
2Li2(z) − 2Li2(z̄) + log(zz̄) log

1 − z

1 − z̄

]

with zz̄ =
x212x

2
34

x213x
2
24

, (1 − z)(1 − z̄) =
x214x

2
23

x213x
2
24

.

We find that in the limit x12 → 0, we have ln(zz̄) → ∞. These singularities are less interesting for our purposes
because they do not signal the existence of new particles. They simply reflect interactions between the particles
that already exist. Such terms can arise both from a contact interaction or from analytic terms in k⃗I in the
exchange diagrams. However, we will see that when the intermediate particles are massive, it leads to a unique
signal in the CMB, an analogue of resonance in cosmological collider physics.

5.5 Four point function with an intermediate massive field

We can now consider conformally coupled scalars φ coupled to a general massive scalar field σ with an inter-
action vertex

∫
λφ2σ. The late time expectation value is given by the following expression:

⟨φk⃗1
(η0) · · ·φk⃗4

(η0)⟩′ =
η4022λ2

16k1k2k3k4
IE(k12, k34, kI) + two other diagrams

IE(k12, k34, kI) ≡ I++ + I+− + I−+ + I−−

I±± = (±i)(±i)
∫ 0

−∞

dη

η2
e±ik12η

∫ η

−∞

dη′

η′2
e±ik34η

′⟨σkI
(η)σ−kI

(η′)⟩′±± (5.8)

where the ± signs indicate the type of branch in the integration contour, and consequently the sign in
subscript of ⟨σkI

(η)σ−kI
(η′)⟩′±± represents the propagator along that branch. The equations of motion for

⟨σkI
(η)σ−kI

(η′)⟩′±± are given as:

(
η2

∂2

∂η2
− 2η

∂

∂η
+ k2Iη

2 +
m2

H2

)
⟨σkI

(η)σ−kI
(η′)⟩′++ = −iH2η2η′2δ(η − η′) (5.9)

Now, consider the following auxiliary object:

F̃ = −
∫ 0

−∞

dη

η2
dη′

η′2
eik12ηeik34η

′
(
η2

∂2

∂η2
− 2η

∂

∂η
+ k2Iη

2 +
m2

H2

)
⟨σkI

(η)σ−kI
(η′)⟩′++ (5.10)

and evaluate it in two ways. First, we use (5.9) to write

F̃ = iH2

∫ 0

−∞
dηei(k12+k34)η =

H2

k12 + k34
,

Next, we integrate the time derivatives by parts4 in (5.10) and trade factors of η for −i∂k12
to obtain

F̃ = −
∫ 0

−∞

dη

η2
dη′

η′2

[
−(k212 − k2I )η2 + 2ik12η +

m2

H2
− 2

]
eik12ηeik34η

′⟨σkI
(η)σ−kI

(η′)⟩′++

= −
[
(k212 − k2I )∂2k12

+ 2k12∂k12
+
m2

H2
− 2

] ∫ 0

−∞

dη

η2
dη′

η′2
eik12ηeik34η

′⟨σkI
(η)σ−kI

(η′)⟩′++

4we are dropping the boundary term at η = 0.
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using (5.8) [
(k212 − k2I )∂2k12

+ 2k12∂k12
+
m2

H2
− 2

]
I++ =

H2

k12 + k34

under the redefinition:

p =
k12
kI

p′ =
k34
kI

I±± =
G±±(p, p′)

kI

hence,

k2I

[
(p2 − 1)∂2p + 2p∂p +

m2

H2
− 2

]
I++ = H2 kI

p+ p′
(5.11)

If we used (
η

′2 ∂2

∂η′2
− 2η′

∂

∂η′
+ k2Iη

′2 +
m2

H2

)
⟨σkI

(η)σ−kI
(η′)⟩′++ = −iH2η2η

′2δ(η − η′)

then by redoing all the same steps we arrive at:

k2I

[
(p′2 − 1)∂2p′ + 2p′∂p′ +

m2

H2
− 2

]
I++ = H2 kI

p+ p′
(5.12)

from (5.11) and (5.12), we have:

[
(p2 − 1)∂2p + 2p∂p − (p′2 − 1)∂2p′ − 2p′∂p′

]
I++ = 0

Similarly, we can use (
η′2

∂2

∂η′
− 2η′

∂

∂η′
+ k2Iη

′2 +
m2

H2

)
⟨σkI

(η)σ−kI
(η′)⟩′+− = 0

to show that [
(k212 − k2I )∂2k12

+ 2k12∂k12
+
m2

H2
− 2

]
I+− = 0.

If we used (
η

′2 ∂2

∂η′2
− 2η′

∂

∂η′
+ k2Iη

′2 +
m2

H2

)
⟨σkI

(η)σ−kI
(η′)⟩′++ = 0

in (5.10) then, we could show:

[
(k234 − k2I )∂2k34

+ 2k34∂k34
+
m2

H2
− 2

]
I+− = 0.

let’s define the following new coordinate

p =
k12
kI

p′ =
k34
kI

I±± =
G±±(p, p′)

kI

and then,

[
(p2 − 1)∂2p + 2p∂p +

m2

H2
− 2

]
G+− = 0

[
(p′2 − 1)∂2p′ + 2p′∂p′ +

m2

H2
− 2

]
G+− = 0.

Notice that “time” has completely disappeared from the problem. The differential equation has been formulated
in terms of boundary momenta with possible singularities at p = ±1 and p = ∞. We demand that the solution
is regular at p = 1 and we will impose the leading singular behavior at p = −1 is properly normalized. The
above equation is very similar to (5.2), therefore, we expect the four point function I+− to factorize as product
of two three point functions which is regular at p, p′ = 1.

G+− ∝ ⟨OOX⟩ ⟨OOX⟩

=
π2

2 cosh2(πµ)
2F1

(
1

2
+ iµ,

1

2
− iµ, 1,

1 − p

2

)
2F1

(
1

2
+ iµ,

1

2
− iµ, 1,

1 − p′

2

)
(5.13)
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where the proportionality constant is determined by imposing the normalization condition at p = −1:

I+− = lim
p,p′→−1

∫ 0

−∞

dη

η2
eik12η

∫ η

−∞

dη′

η′2
e−ik34η

′ ηη′

2kI
eikI(η−η′)

=
1

2kI
ln(1 + p) ln(1 + p′) =⇒ G+− =

1

2
ln(1 + p) ln(1 + p′)

We know the following from

Γ

(
1

2
+ iµ

)
Γ

(
1 − 1

2
− iµ

)
=

π

sin
[
π
(
1
2 + iµ

)]

= − π

cos(iπµ)

we get:

lim
p→−1

2F1

(
1

2
+ iµ,

1

2
− iµ, 1,

1 − p

2

)
→ − ln

(
1 − 1−p

2

)

Γ
(
1
2 + iµ

)
Γ
(
1
2 − iµ

)

≈ cosh(πµ)

π
ln(1 + p)

We quickly observer that the four point correlation function has branch point at p = −1 and p = ∞.
Another way to evaluate the same is to use the long-distance approximation discussed in Equation (5.1). This

long-distance behavior is independent of the ± subindices as Feynman Propagator and Wightmann Propagator
coincide. This is basically because we are probing separations where the two vertices are outside each others’
lightcones, so that the time-ordering does not matter.

⟨σkI
(η)σ−kI

(η′)⟩′±± ≈ H2

4π
(ηη′)

3/2

[
Γ(ν)2

(
k2Iηη

′

4

)−ν

+ Γ(−ν)2
(
k2Iηη

′

4

)ν
]

= (ηη′)
3/2+νH

2

4π

[
Γ(−ν)2

(
k2I
4

)ν]
+ (ηη′)

3/2−νH
2

4π

[
Γ(ν)2

(
k2I
4

)−ν
]

= (ηη′)∆
H2

4π

[
Γ(−iµ)2

(
k2I
4

)iµ
]

+ (ηη′)∆̃
H2

4π

[
Γ(iµ)2

(
k2I
4

)−iµ
]

︸ ︷︷ ︸
c.c.

using ν = iµ and defining a new variable J±:

J±(k12) = ±i
∫ 0

−∞

dη

η2
e±ik12η(−η)∆

= −(∓i)∆(k12)1−∆Γ(∆ − 1)

= −(∓eiπ
2 )∆(k12)1−∆Γ(∆ − 1)

using ∆ = 3
2 + iµ, we get from (5.8):

I++ + I+− + I−+ + I−− =

(
J+(k12)J+(k34) + J+(k12)J−(k34) + J−(k12)J+(k34)

+ J−(k12)J−(k34)

)
H2

4π

[
Γ(−iµ)2

(
k2I
4

)iµ
]

+ (µ↔ −µ)

setting H = 1

= [J+(k12) + J−(k12)][J+(k34) + J−(k34)]
1

4π

[
Γ(−iµ)2

(
k2I
4

)iµ
]

+ (µ↔ −µ)

IE =
1

2π
√
k12k34

[(
k2I

4k12k34

)iµ

(1 + i sinhπµ)Γ(−iµ)2Γ

(
1

2
+ iµ

)2

+ c.c.

]

Hence

⟨ϕk⃗1
ϕk⃗2

ϕk⃗3
ϕk⃗4

⟩′kI→0 ∼ η4λ2

4k1k2k3k4
IE
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we see that the signal oscillates with a frequency and phase given by the mass of the new particles. This is the
analog of resonances in collider physics. We can see that the overall amplitude scales as e−πµ for large µ by
using the following:

Γ(±iµ)2Γ

(
1

2
∓ iµ

)2

= |Γ(±iµ)|2
∣∣∣∣Γ
(

1

2
∓ iµ

)∣∣∣∣
2

e±iδ

=
π

µ sinh(πµ)

π

cosh(πµ)
e
±i δ

We can simplify the IE for large mass:

IE =
1

2π
√
k12k34

π2

µ sinh(πµ) cosh(πµ)

[(
k2I

4k12k34

)iµ

(1 + i sinh(πµ))eiδ + c.c

]

∼ πe−πµ

2µ
√
k12k34

sin

[
µ ln

(
k2I

4k12k3

)
+ δ

]

Notice that above contains oscillations in the logarithm of the ratio k2
I/k12k34. It means we have a bump in the

squeezed limit as compared to bump near the mass scale in energy distribution. If the leading e−πµ contribution
comes from either I++ or I−−. Then, subleading e−2πµ contribution comes from I+− or I−+, which can be
seen as follows:

I++ = J+(k12)J+(k34)
H2

4π

[
Γ(−iµ)2

(
k2I
4

)iµ
]

+ (µ↔ −µ)

= ieπµ
H2

4π
√
k12k34

(
k2I

4k12k34

)iµ

Γ(−iµ)2Γ

(
1

2
+ iµ

)2

+ (µ↔ −µ)

I−+ = J−(k12)J+(k34)
H2

4π

[
Γ(−iµ)2

(
k2I
4

)iµ
]

+ (µ↔ −µ)

=
H2

4π
√
k12k34

(
k2I

4k12k34

)iµ

Γ(−iµ)2Γ

(
1

2
+ iµ

)2

+ (µ↔ −µ)

It satisfies the analytic continuation condition:

I+±(k12, k34, kI) = −I−±(eiπk12, k34, kI)

We can derive the same using (5.13) by taking the limit p, p′ → ∞.

lim
|z|→∞ 2F1(a, b, c; z) ≈ Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
(−z)−a +

Γ(a− b)Γ(c)

Γ(a)Γ(c− b)
(−z)−b

and duplication formula

Γ(2iµ) =
22iµ

2
√
π

Γ(iµ)Γ

(
1

2
+ iµ

)

Γ(−2iµ) =
2−2iµ

2
√
π

Γ(−iµ)Γ

(
1

2
− iµ

)

∣∣∣∣Γ
(

1

2
+ iµ

)∣∣∣∣
2

=
π

cosh(πµ)

Then

G+− ∼ 1

2
√
πp

[
(2p)−iµΓ(−iµ)Γ

(
1

2
+ iµ

)
+ c.c

]
× 1

2
√
πp′

[
(2p′)−iµΓ(−iµ)Γ

(
1

2
+ iµ

)
+ c.c

]

upon simplification, we get

G+− ∼ kI

4π(k12k34)
1
2

[
(4pp′)iµΓ(iµ)2Γ

(
1

2
− iµ

)2

+ c.c.

]
+ . . .

I+− ∼ 1

4π(k12k34)
1
2

[
(4pp′)iµΓ(iµ)2Γ

(
1

2
− iµ

)2

+ c.c.

]
+ terms independent of kI︸ ︷︷ ︸

analytic
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In the small kI or p, p′ → ∞ limit, we can obtain the results for the other integrals by performing analytic
continuation and then adding them up we get back the same expression of IE keeping only the non-analytic
terms in kI . We see that piµ has branch point at p = 0 and p = −1,∞ from log(1 + p), therefore, the branch
cut lies in the interval p ∈ [−1, 0]. Since we can move the branch cut by using a different branch of multivalued
function but we can not move the branch point. The main argument for interpreting it as a signal for particle
production is the presence of branch cut and particle production begins as we approach the branch point in
the long wavelength limit.

5.6 Interpretation

The main result of this chapter can be expressed in a more convenient form by separating the result into
gaussian part + non-gaussian part via wavefunction formalism, leading to an interesting interference effect on
the cosmological scale. For the four point function, we naturally have zeroth order disconnected diagram and
second order connected diagram describing interaction.

Figure 5.6: The first diagram represents the disconnected diagram where the fields had gaussian evolution while
the second is connected diagram describing creation of massive intermediate particles which decays eventually
leading to curvature perturbation on the CMB.

However, we can not attribute the physical process to any one feynman diagram[16]. The probability
is given by the square of sums – and not by the sum of squares. The additional “interference term” can
not be assigned to a single Feynman diagram. Recall the double slit in QM: observable pattern =|slit1 +
slit2|2. A single Feynman diagram is like the probability amplitude for the electron passing to one slit.
If either the disconnected gaussian feynman diagram was describing the physical process or the connected
non-gaussian feynman diagram was describing it. There would have been no problem at all. However,
the physical process being described is in superposition of all feynman diagrams describing the process.

How to extract information from CMB map?

7

δT

N
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Non-Gaussian
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Figure 5.7: Zeroth order disconnected diagrams describ-
ing gaussian evolution of fields and second order con-
nected diagrams describing non-gaussian evolution.

The leading boltzmann supression is being attributed
to the interference effect between different diagrams.
The probability will be given by the square of sum
of amplitude for each feynman diagram. Hence, the
leading contribution scaling as e−πµ will arise from
the cross term describing gaussian and non-gaussian
evolution. Such cross term is to be interpreted as de-
scribing interference between producing the pair and
not producing the pair of particles. While the sub-
leading term will arise from pair production going as
e−2πµ. Since, the probability for creating the particle
goes as e−2πµ. We will write the wavefunction for the
process as:

ψ = ψno pair︸ ︷︷ ︸
gaussian evolution

Lint=0

+e−πµψpair

we assume that, the non-gaussianity here is originating purely from pair production.
This effect is very quantum mechanical since we see the oscillations of the wavefunction of a quantum

particle. Here we are seeing the oscillations because we have the interference between producing the pair and
not producing the pair of particles.

|ψ|2 ≈ |ψno pair|2 + e−πµψno pairψ
⋆
pair + e−πµψpairψ

⋆
no pair

In flat space quantum field theory, we know that either the connected diagrams dominate or the disconnected
diagrams dominate. However, what we observe here is that, for the non-Gaussian part, the interference term
dominates over connected diagram. What it implies is that looking at the sky we can never tell where the
particle production took place, we can only detect the deviation in the probability distribution.
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Chapter 6

Observing Inflationary Particle Physics
in the CMB

Figure 6.1: The illustration of power spectrum and
the type of fluctuation each range of multipole mo-
ment l encodes within the spectrum.

The cosmic microwave background (CMB) serves as a
powerful window into the physics of the early universe.
The primordial density fluctuations imprinted on the CMB
anisotropies carry signatures of quantum processes that oc-
curred during inflation. In particular, the non-Gaussian
features of the CMB—encoded in higher-point correlation
functions—offer a unique opportunity to study particle pro-
duction and interactions at energy scales far beyond the
reach of terrestrial colliders.

In this chapter, we discuss how such signatures can
be extracted from CMB data, focusing on the role of
the bispectrum and trispectrum as tools to detect non-
Gaussianities. We explain how heavy particles coupled to
the inflaton can leave characteristic imprints—such as os-
cillatory “clock signals”—in the momentum dependence of
these correlation functions. We also highlight the obser-
vational challenges and prospects associated with measur-
ing these signals in current and future CMB experiments,
thereby establishing a bridge between high-energy particle
physics and precision cosmology.

6.1 Statistical Structure of Gaus-
sian Fields

To understand the statistical properties of primordial fluc-
tuations and their imprints in the cosmic microwave background (CMB), it is crucial to begin with the simplest
case: a single random variable x drawn from a probability distribution. If x follows a Gaussian distribution
with zero mean, then its probability density function (PDF) is given by:

P (x) =
1√

2πσ2
exp

(
− x2

2σ2

)

This distribution is normalized such that: ∫ ∞

−∞
P (x) dx = 1

Here, σ2 denotes the variance of the distribution, and it fully characterizes the statistics of x. We can now
compute the moments of x to reveal its statistical structure:

⟨x⟩ = 0 (mean)

⟨x2⟩ = σ2 (variance)

⟨x3⟩ = 0 (skewness vanishes)

⟨x4⟩ = 3σ4 (kurtosis)
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⟨x5⟩ = 0 (odd moments vanish)

...

In general, for a Gaussian variable, all odd moments vanish, and even moments are entirely determined
by σ. This reflects the high degree of symmetry and simplicity in the Gaussian distribution: all statistical
information is encoded in the two-point function (the variance in this case).

6.2 Multivariate Gaussian Fields and Correlation Functions

Extending to the case of a spatially distributed field, we consider a set of random variables {x1, x2, . . . , xN},
which may represent field values at different spatial points. These variables can obey a multivariate Gaussian
distribution, defined by the joint PDF[17]:

P (x1, x2, . . . , xN ) =
1

(2π)N/2|ξ|1/2 exp


−1

2

∑

i,j

xi(ξ
−1)ijxj




Here, ξij = ⟨xixj⟩ defines the covariance matrix, also referred to as the two-point correlation function. The
normalization condition ensures:

∫ ∞

−∞
· · ·
∫ ∞

−∞
P (x1, . . . , xN ) dx1 . . . dxN = 1

The expectation values or moments are:

⟨xi⟩ = 0

⟨xixj⟩ = ξij

⟨xixjxk⟩ = 0

⟨xixjxkxl⟩ = ξijξkl + ξikξjl + ξilξjk

⟨xixjxkxlxm⟩ = 0

...

The structure of the four-point and higher even-order moments is dictated by Wick’s theorem, which
states that all higher-order moments of a Gaussian field can be expressed as products of two-point functions.
For example:

⟨x1x2x3x4⟩ = ⟨x1x2⟩⟨x3x4⟩ + ⟨x1x3⟩⟨x2x4⟩ + ⟨x1x4⟩⟨x2x3⟩
In the special case of a single Gaussian variable:

⟨x4⟩ = 3⟨x2⟩2 = 3σ4

In cosmology, these statistical properties play a central role. The primordial fluctuations generated during
inflation are expected to be nearly Gaussian, with the two-point function—the power spectrum—capturing
their dominant behavior. Deviations from Gaussianity (i.e., non-zero higher-point correlations beyond what
Wick’s theorem predicts) provide crucial clues about interactions and particle production during inflation.

The covariance matrix ξij , or equivalently the two-point function ⟨δ(x⃗i)δ(x⃗j)⟩, is the key observable in the
CMB temperature and polarization maps. By extending our study to the bispectrum and trispectrum, we can
test for and constrain possible new physics beyond the minimal inflationary paradigm.

6.2.1 Homogeneity and Isotropy

Let q⃗ be spatial coordinates. Then, random variables at a given spatial position will be given by X(q⃗). The
2-point correlation function between 2 points q⃗i and q⃗j is

ξij = ⟨X(q⃗i)X(q⃗j)⟩

Let r⃗ij be a vector connecting two points.

ξij = ⟨X(q⃗i)X(q⃗i + r⃗ij)⟩

Thus, ξij would depend on q⃗i as well as r⃗ij .
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• Homogeneity (translational invariance) : statistical homogeneity demands ξij not depend on q⃗i

∴ ξij ̸= ξ(q⃗i, r⃗ij), but ξij := ξ(r⃗ij)

• Isotropy (rotational invariance): when seen from a given point q⃗i, ξij does not depend on the direction of
r⃗ij .

∴ ξij := ξ(q⃗i, |r⃗ij |)

• Homogeneity and Isotropy: If ξij is isotropic from any point in space, then it must be also homogeneous.
We believe that we live in a universe which is isotropic and homogeneous. (But we must keep testing this
hypothesis - it’s fundamental enough for it to be tested repeatedly!)

ξij ≡ ξij(|r⃗ij |)

Let us consider a Fourier transform of x(q⃗),

X̃(k⃗) ≡
∫
d3qe−ik⃗·q⃗X(q⃗)

and consider the covariance matrix given by

Cij = ⟨X̃(k⃗i)X̃
∗(k⃗j)⟩

The translational invariance demands

Cij = (2π)3δ
(3)
D (k⃗i − k⃗j)P (k⃗j)︸ ︷︷ ︸

power spectrum

The rotational invariance further demands

P (k⃗j) → P (|⃗kj |)
Proof:

Cij =

∫
d3q

∫
d3q′ e−ik⃗i·q⃗eik⃗j ·q⃗′⟨X(q⃗)X(q⃗′)⟩

=

∫
d3q

∫
d3re−i(k⃗i−k⃗j)·q⃗eik⃗j ·r⃗ ⟨X(q⃗)X(q⃗ + r⃗)⟩︸ ︷︷ ︸

ξ(r⃗)

Translational Invariance:

⟨X(q⃗)X(q⃗ + r⃗)⟩ = ξ(r⃗)

Cij =

∫
d3reik⃗j ·r⃗ξ(r⃗)

︸ ︷︷ ︸
P (k⃗j)

∫
d3qe−i(k⃗i−k⃗j)·q⃗

︸ ︷︷ ︸
(2π)3δ(3)(k⃗i−k⃗j)

= (2π)3δ(3)(k⃗i − k⃗j)P (k⃗j)

Rotational Invariance:
ξ(r⃗) = ξ(|r|) =⇒ P (k⃗j) = P (|⃗kj |)

Therefore,
Cij = (2π)3δ(3)(k⃗i − k⃗j)P (|⃗kj |)

We can write down the PDF of X̃(k) as well:

P (X̃(k⃗1), · · · , X̃(k⃗N )) =
1

(2π)N/2|C|1/2 e
− 1

2

∑
ij X̃(k⃗i)(C

−1)ijX̃
∗(k⃗j)

For a translationally and rotationally invariant x, we have

P (X̃(k⃗1), · · · , X̃(k⃗N )) =
1

(2π)N/2
(∏

i P (|⃗ki|)
)1/2 e

− 1
2

∑
i

|x̃(k⃗i)|
2

P (|k⃗i|)

which is much simplified.
For this reason, we often deal with the Fourier quantities such as the power spectrum, P (|⃗k|), when we

analyze the cosmological data sets, as we believe that we live in a statistically homogeneous and isotropic
universe.
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Bispectrum

We can expand the above argument, and define the ”bispectrum,” given by

⟨X̃(k⃗1)X̃(k⃗2)X̃(k⃗3)⟩ (= 0 for a Gaussian X̃)

Translational and rotational invariance then demand that this quantity be

⟨X̃(k⃗1)X̃(k⃗2)X̃(k⃗3)⟩ = (2π)3δ(3)(k⃗1 + k⃗2 + k⃗3)B(|⃗k1|, |⃗k2|, |⃗k3|)

6.2.2 Non-Gaussian Statistics

Gaussian statistics is particularly appealing because the probability distribution function (PDF) is completely
specified by the two-point correlation function, both in real space and in Fourier space. However, in many
physical situations—including the early universe—it becomes essential to consider deviations from Gaussianity.

A natural question arises: What do we do when the fluctuations are non-Gaussian?
In general, there is no unique or optimal method to handle an unknown PDF. However, in the context

of cosmology, we are guided by observational data: measurements of the CMB suggest that the primordial
fluctuations are nearly Gaussian. This means that any deviations from Gaussian statistics must be small and
can therefore be treated perturbatively.

A reasonable approach in this regime is to approximate the non-Gaussian PDF as a small deformation of the
Gaussian one. That is, we expand around the Gaussian PDF to capture leading-order non-Gaussian features.

Recap: The Taylor expansion of a smooth function f(x) around x = 0 is given by:

f(x) =

∞∑

n=0

xn

n!

dnf

dxn

∣∣∣∣
x=0

We apply this same logic to perturb the Gaussian PDF to model weakly non-Gaussian statistics.
Let P (x) be the true (non-Gaussian) PDF of the field. We expand it around the Gaussian PDF, PG(x), as:

P (x) = PG(x)

[
1 +

∞∑

n=3

1

n!
κnHn

(x
σ

)]

where:

• PG(x) = 1√
2πσ2

exp
(
− x2

2σ2

)
is the Gaussian PDF,

• Hn(x) are the Hermite polynomials,

• κn are the cumulants beyond the second order (e.g., skewness κ3, kurtosis κ4, etc.).

This form ensures that deviations from Gaussianity are encoded in higher-order cumulants. The Hermite
polynomials serve as an orthogonal basis with respect to the Gaussian measure, which makes them a natural
choice for this expansion.

In cosmology, this expansion has a direct interpretation:

• The presence of a non-zero bispectrum (three-point function) corresponds to a non-zero skewness, or
κ3.

• The presence of a trispectrum (four-point function) corresponds to non-zero kurtosis, or κ4.

Thus, measurements of higher-order correlation functions in the CMB can be seen as an attempt to recon-
struct the full probability distribution of primordial fluctuations, moving beyond the Gaussian approximation.

This framework—perturbing around a Gaussian—is at the heart of modern non-Gaussian cosmology and
forms the basis for the field known as cosmological collider physics, which seeks to interpret these higher-point
statistics in terms of underlying particle physics during inflation.

51



6.2.3 Gram-Charlier Expansion

Consider a Gaussian PDF within a unit variance σ2 = 1 and zero mean. Let’s call it G(x):

G(x) =
1√
2π
e
−x2/2

Then, suppose that we have a PDF of a weakly non-gaussian random variable, and we want to describe this
new PDF, P (x), as a perturbation to G(x). We obtain:

P (x) =

∞∑

n=0

Cn
dnG(x)

dxn

= G0(x)[C0 + (−1)C1x+ C2(x2 − 1) + (−1)C3(x3 − 3x) + . . . ]

This is so called “Gram-Charlier Expansion”. There is another way to express this result and for that we need
to define Chebyshev-Hermite Polynomials as

Hen(x) ≡ (−1)n
1

G(x)

dnG

dxn

= (−1)ne
x2/2 dne−x2/2

dxn

we have:

He0(x) = 1

He1(x) = x

He2(x) = x2 − 1

He3(x) = x3 − 3x

He4(x) = x4 − 6x2 + 3 (6.1)

The PDF can be written as:

P (x) = G(x)

[ ∞∑

n=0

Cn(−1)nHen(x)

]
(6.2)

In other words, we are expanding the ratio, P (x)/G(x), in terms of the Chebyshev-Hermite polynomials times
(−1)n.

P (x)

G(x)
=

∞∑

n=0

Cn (−1)nHen(x)

A nice property of Hen(x) is that it satisfies the following relation:

∫ ∞

−∞
G(x)Hen(x)Hem(x)dx = m!δmn

which allows us to systematically derive the coefficient, Cn. First, multiply both sides of (6.2) by Hen(x), and
integrate over x.

∫ ∞

−∞
dxP (x)Hen(x) =

∞∑

m=0

Cm(−1)m
∫ ∞

−∞
dxG(x)Hem(x)Hen(x)

=

∞∑

m=0

Cm(−1)mm!δmn

= (−1)nn!Cn

∴ Cn =
(−1)n

n!

∫ ∞

−∞
dxP (x)Hen(x)

using (6.1), we get:

C0 =

∫ ∞

−∞
dxP (x) = 1 (normalization of PDF)
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C1 = −
∫ ∞

−∞
dxxP (x) = 0 (zero mean)

C2 =
1

2!

∫ ∞

−∞
dx(x2 − 1)P (x) =

1

2
(
〈
x2
〉
− 1)

= 0 (unit variance)

C3 =
−1

3!

∫ ∞

−∞
dx(x3 − 3x)P (x) =

−1

6

〈
x3
〉

=
−1

6
k3 (where k3 is skewness)

C4 =
1

4!

∫ ∞

−∞
dx(x4 − 6x2 + 3)P (x)

=
1

24
(
〈
x4
〉
− 3) ≡ 1

24
k4 (where k4 is kurtosis.)

Therefore, the expansion coefficients are the moments of P (x). Collecting all terms, the Gram-Charlier expan-
sion of zero mean, unit variance PDF is given by:

P (x) = G(x)

[
1 +

1

6
k3He3(x) +

1

24
k4He4(x) + . . .

]

6.2.4 Edgeworth Expansion

Next we extend to the case σ ̸= 1. A useful expansion parameter is

Sn =
kn

2σ2n−2

Note that Sn may carry units if kn does.
Let y be a random variable. The Edgeworth expansion becomes:

P (y) =
1

σ
G(y/σ)

[
1 + σ

S3

6
He3(yσ) + σ2S4

24
He4(yσ) + · · ·

]

=
1√
2πσ

e−y2/(2σ2)

[
1 + σ

S3

6

(
y3

σ3
− 3

y

σ

)
+ σ2S4

24

(
y4

σ4
− 6

y2

σ2
+ 3

)
+ · · ·

]

This is the Edgeworth Expansion.

6.3 Application : Gravitational Clustering

In cosmology, it is believed that collapsed structures like dark matter halos form at regions corresponding to
high-density peaks. Therefore, within this framework, the statistical properties of such structures—like the
number density of halos—can be inferred from the probability distribution function (PDF) of the underlying
density field.

0

δ = ρ−⟨ρ⟩
⟨ρ⟩

space

over density region (δ > 0)
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In the most basic model, halos are assumed to form in regions where the density contrast δ surpasses a critical
threshold, typically taken to be δc = 1.686.

0

δ = ρ−⟨ρ⟩
⟨ρ⟩

space

halo formed

What about mass? The standard method looks at early times when δ ≪ 1. The mass in a region of radius R is

M =
4π

3
⟨ρ⟩R3

We then smooth the density field with a top-hat filter of radius R—effectively binning it on that scale.

0

space

δ

R R R

0

δR

space

Figure 6.2: The density function is being smoothed out by using the top hat function.

Then track δR as it grows until it crosses the threshold δc = 1.686. At that point, a collapsed object forms with
mass

M =
4π

3
⟨ρ⟩R3.

0

δR

space

1.686

halo formed !

According to Press & Schechter, the mass function
(number density of halos per unit mass) is:

dn

dM
= −2

⟨ρ⟩
M

d

dM

∫ ∞

δc

dδR P (δR)

For a Gaussian PDF, P (δR) = 1√
2πσR

exp
(
− δ2R

2σ2
R

)
,

this gives:

dn

dM
= 2

⟨ρ⟩
M

δc
dσ−1

R

dM

1√
2π

exp

(
− δ2c

2σ2
R

)

This is the Press-Schechter mass function, normalized
such that ∫ ∞

0

dM M
dn

dM
= ⟨ρ⟩

i.e., total mass is accounted for by halos down to M → 0, though this assumption is debatable.
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Now consider an Edgeworth-expanded PDF:

P (δR) =
1√

2πσR
exp

(
− δ2R

2σ2
R

)[
1 + σR

S3

6

(
δ3R
σ3
R

− 3
δR
σR

)

+ σ2
R

S4

24

(
δ4R
σ4
R

− 6
δ2R
σ2
R

+ 3

)
+ · · ·

]

For non-Gaussianities, the mass function becomes:

dn

dM
=

√
2

π

⟨ρ⟩
M

exp

(
− δ2c

2σ2
R

)[
δc

dσ−1
R

dM

(
1 + σR

S3

6

{
δ3c
σ3
R

− 2
δc
σR

− σR
δc

})

− σR
1

6

dS3

dM

(
δ2c
σ2
R

− 1

)]

Positive skewness (S3 > 0) enhances the abundance of massive halos.

6.4 Non-Gaussianity as a test of inflation

Having explored the mathematical framework for non-Gaussianity and its significance in cosmological pertur-
bation theory, we now turn to its application in the Cosmic Microwave Background (CMB). We have already
established that the primordial fluctuations imprinted on the CMB provide a unique window into the physics
of the early universe. In this section, we focus to apply these ideas to the early universe and constrain the
parameters of the cosmological collider physics. We have studied power spectrum and bispectrum in the earlier
chapter, here we learn how they could be seen in data.

6.4.1 Power Spectrum

Inflation produces perturbations in the spatial part of the metric δgij . The scalar part of δgij will seed the
structures we see today; while the tensor part of δgij will propagate as gravitational waves. Let us write1

gij = e2ζγija
2(t)

{
e2ζ = 1 + 2 ζ + . . .

γij = δij + hij + . . .

curvature perturbation

gravitational wave

where i, j = 1, 2, 3. In this section, we will study the statistical properties of ζ. It is convenient to recall the
following relation between ζ and the observables.

1. CMB Temperature Anisotropy or very large angular scales where the “Sachs Wolfe” approximation is
valid:

δT

T
= −1

5
ζ(n̂r⋆, z⋆) where r⋆ is conformal distance to z⋆

2. Newtonian gravitational potential in fourier space during matter era:

Ψ̃k⃗ = −3

5
ζ̃k⃗ T (k)

where T (k) is the transfer function.

Inflation usually predicts a nearly power-law power spectrum.

⟨ζ̃k⃗ ζ̃⋆k⃗′⟩ = (2π)3δ3(k⃗ − k⃗′)Pζ(|⃗k|)

which can be written as:
Pζ(k) ≡ Pζ(|k⃗|) ∝ kns−4

1we normally write
gij = e2Φγija

2(t)

and then define ζ as

ζ = ϕ+

∫
dρ

3(ρ+ p)

But we use the uniform density gauge.
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Inflation predicts that ns ≈ 1, and this is referred to as a ”scale-invariant spectrum.” To understand why ns ≈ 1
is called ”scale-invariant,” let’s calculate the real-space 2-point correlation function:

ξζ(r) ≡ ⟨ζ(q⃗)ζ(q⃗ + r⃗)⟩ =

∫
d3k

(2π)3
Pζ(k)eik⃗·r⃗

=

∫ ∞

0

dk

k

k3Pζ(k)

(2π)2
sin(kr)

kr

Thus, the correlation function ξζ(r) is given by

ξζ(r) ≈ k3Pζ(k)

2π2

∣∣∣∣∣
k≈ 1

r

∝ r1−ns .

So, for ns ≈ 1, ξζ(r) becomes independent of r. (More precisely, ξζ(r) depends on r only logarithmically, which
is why it’s called “scale-invariant.”) The latest observations give:

ns = 0.96 ± 0.01 (68% CL).

To calculate the theoretical predictions for the power spectrum, one can use CAMB or its web interface.
While the power spectra are often computed analytically in Fourier space, it’s more natural to express statistical
fluctuations in terms of the spherical harmonic basis when comparing theoretical predictions to real-world
observables. The spherical harmonics Ylm form a natural basis for functions f(n̂) defined on the surface of
a sphere, which is why they are a preferred representation for observations of the sky. Using the expansion
coefficients alm, any arbitrary function f(n̂) on the sphere can be expanded as:

f(n̂) =

∞∑

l=0

l∑

m=−l

almYlm(n̂), alm =

∫

4π

f(n̂)Y ∗
lm(n̂) dΩ.

The observed isotropy of the universe enables the calculation of the corresponding power spectrum. For func-
tions with rotational invariance, the coefficients are related to the angular power spectrum Cl by:

Clδll′δmm′ = ⟨alma∗l′m′⟩,

where δlm is the Kronecker delta. Since we can only observe one realization of this underlying stochastic process,
the measured value is the averaged quantity:

Cl =
1

2l + 1

l∑

m=−l

|alm|2.

6.4.2 Bispectrum

Simple models of inflation satisfying all the following conditions:

• single field

• canonical kinetic term

• slow-roll and

• vacuum initial state

Produce a tiny amount of non-gaussianity-too liny to be detected by any experiments. Consider the bispectrum
of the curvature perturbation at the end of inflation. It’s fourier transform is given by:

⟨ζk⃗1
ζk⃗2

ζk⃗3
⟩ =

∫
d3x1d

3x2d
3x3e

−i(
∑3

i=1 k⃗i·x⃗i)⟨ζ(x1)ζ(x2)ζ(x3)⟩

Assuming the statistical homogeneity and isotropy, the correlation function is invariant under arbitrary spatial
translation, so we set x′i = xi − x3 for i = 1, 2

=

∫
d3x′1d

3x′2d
3x3e

−i(
∑2

i=1 k⃗i·(x⃗′
i+x⃗3)+k⃗3·x3)⟨ζ(x′1)ζ(x′2)ζ(0)⟩
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= (2π)3δ(3)(k⃗1 + k⃗2 + k⃗3)

∫
d3x′1d

3x′2e
−i(

∑2
i=1 k⃗i·(x⃗′

i)⟨ζ(x′1)ζ(x′2)ζ(0)⟩

= (2π)3δ(3)(k⃗1 + k⃗2 + k⃗3)Bζ(k1, k2, k3)

the above simple models tend to produce

Bζ(k1, k2, k3)

Pζ(k1)Pζ(k2) + Pζ(k1)Pζ(k3) + Pζ(k2)Pζ(k3)
= O

(
10−2

)

which happens to be unobservably small.
However, if any of the above four conditions were violated, inflation could produce much larger non-

Gaussianity. Since Bζ(k1, k2, k3) has 3 variables to play with, we have many shapes to play with. Imposing
scale invariance allows us to reduce the number of degree of freedom to 3:

k2
k1
,

k3
k1
, and angle between k2 and k3

Among various shapes considered in the literature, let us pick 3 which are associated with the conditions
mentioned earlier:

1. Squeezed Limit: |⃗k3| << |⃗k2| ≈ |⃗k1|
Detection of this shape would rule out all single field models.

2. Equilateral Limit: |⃗k3| ≈ |⃗k2| ≈ |⃗k1|
Detection of this shape indicates enhanced field interaction at the horizon exit. This can be achieved by
e.g. non-canonical kinetic terms.

3. Folded Limit: |⃗k3| ≈ |⃗k2| ≈ |k⃗1|/2
Detection of this shape would suggest that the initial state of quantum fluctuation in scalar fields were
not in the vacuum state.

4. More complex behavior: When slow roll is violated, it often induces a violation of scale-invariance,
and thus more complex shapes are possible, such as oscillating bispectrum.

For the rest of this chapter, we will focus only on “squeezed limit”. Bispectrum estimation from CMB can be
done using CMBBEST.

6.5 Multi-field inflation and Bispectrum

Perhaps, the most important goal of measuring the squeezed limit is to rule out the single-field models of
inflation. How do we then calculate the bispectrum of the curvature perturbations, ζ, from multi-field inflation?
For this purpose, there is a very convinent and powerful method called the δN formalism. Here, N is the number
of e-folds of expansion:

N ≡ ln
a(tobservation)

a(tinitial)

Now, looking at the metric (spatial components, ignoring gravitational waves),

gij = a2(t)e2ζ(q⃗)δij ; q⃗ is the comoving coordinates

One can define an inhomogeneous scale factor,

â(t, q) = a(t)eζ(q⃗)

Then, if we choose the initial time to be on the flat hypersurface, in which gij = a2(t)δij , then

N̂ = ln
â(tobservation)

a(tinitial)
= ln

a(tobservation)

a(tinitial)
+ ζ(q⃗)

Thus
ζ(q⃗) = δN(q⃗) ≡ N̂(tobservation, tinitial, q⃗) −N(tobservation, tinitial)

This is the δN formalism. To be more precise:

1. tinitial is on the flat hypersurface, in which gij = a2(t)δij
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2. tobservation is on the uniform density hypersurface, in which δρ = 0.

The next question is, “How do we compute δN(q⃗)?” To calculate δN(q⃗), we can use “gradient expansion
method”, for which we systematically ignore the terms that involve spatial derivatives. This is a valid approx-
imation, as long as the wavelength of perturbation we deal with is much greater than the Hubble length.

H−1 H−1

ti
m

e

space

ζ(q⃗)

To zeroth order in gradient expansion, in which all the spatial derivatives are ignored, something remarkable
happens. The Friedmann Equation for the backgroun (mean)

3M2
pl ⟨H⟩2 = ⟨ρ⟩

is same as the Friedmann equation for the perturbed quantities

3M2
plĤ

2 = ρ̂

This is a completely non trivial result. Naively, one can say “when the wavelength ofccurvature perturbation
ζ is much larger than the Hubble horizon, each horizon patches evolves as if they were a separate universe.

H−1
1 H−1

2

gij = a2(t)e
2ζ

1 δij

gij = a2(t)e
2ζ

2 δij

ti
m

e

space

ζ(q⃗)

Under this approximation, all we need to do is to solve the background evolution:

3M2
pl ⟨H⟩2 = ⟨ρ⟩

for different initial conditions, and calculate perturbations as the differences between the initial conditions.
Namely:

N̂(q⃗) = N̂(ϕIinitial(q⃗), ϕ̇
I
initial(q⃗))

=

∫
dtĤ(ϕIinitial(q⃗), ϕ̇

I
initial, t)
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In order for ϕ to contribute to ρ (hence H), ϕ should be slow-rolling. Then, ϕ̇ is a function of ϕ, and thus we
obtain:

ζ(q⃗) = δN(q⃗) =
∑

I

∂N

∂ϕIinitial
δϕIinitial(q⃗) +

1

2

∑

IJ

∂2N

∂ϕIinitial∂ϕ
J
initial

δϕIinitial(q⃗)δϕ
J
initial(q⃗) + . . .

This completes the δN formalism.

6.6 Single Field Check

Let us apply the δN formalism to the single-field case, to make sure that we recover the well-known result:

ζ = −H
ϕ̇

∣∣∣∣∣
initial

δϕinitial

Here, ϕ ≡ ϕ1 because we have a single field model.

N̂ =

∫ tobs

ti

dtĤ =

∫ ϕobs

ϕini

dϕ
H

ϕ̇

where we have introduced the short hand notation, tobs ≡ tobservation and tini ≡ tinitial. Now, tobs is on the
uniform density hypersurface, so

ϕobs = ⟨ϕ⟩obs
On the other hand, tini is on the flat hypersurface, and thus

ϕini = ⟨ϕ⟩ini + δϕini

Therefore,

N̂ =

∫ ⟨ϕ⟩obs

⟨ϕ⟩ini+δϕini

dϕ
H

ϕ̇

≈
∫ ⟨ϕ⟩obs

⟨ϕ⟩ini

dϕ
⟨Ḣ⟩
ϕ̇

−⟨H⟩
ϕ̇

∣∣∣∣∣
ini

δϕini + O
(
δϕ2
)

︸ ︷︷ ︸
δN

Hence,

∴ ζ = δN = N̂ − ⟨N⟩ = −H
ϕ̇

∣∣∣∣
ini

δϕini

6.7 Local-form Non-Gaussianity

Look at the δN form:

ζ(q⃗) = δN(q⃗) =
∂N

∂ϕI
δϕI(q⃗) +

1

2

∂2N

∂ϕI∂ϕJ
δϕI(q⃗)δϕJ(q⃗) + . . .

Here, we omitted the subscript “ini” for clarity and assumed that the repeated indices mean the summation.
This form is “local” because the left hand side and the right hand side are evaluated at the same comoving
position, q⃗. Also, this implies that ζ must be non-Gaussian even if δϕI(q⃗)’s are Gaussian. To see this, compute
the real space 3-point function:

⟨ζ(q⃗1)ζ(q⃗2)ζ(q⃗3)⟩ =
∂N

∂ϕI
∂N

∂ϕJ
∂N

∂ϕK
〈
δϕI(q⃗1)δϕJ(q⃗2)δϕK(q⃗3)

〉

+
1

2

∂N

∂δϕI
∂N

∂δϕJ
∂2N

∂δϕK∂δϕL
〈
δϕI(q⃗1)δϕJ(q⃗2)δϕK(q⃗3)δϕL(q⃗3)

〉
. . .

The 1st term vanishes if δϕI ’s are Gaussian. However, the 2nd term does not (recall the wick’s theorem). Now,
let’s compute the Bispectrum. In fourier space,

ζk⃗ = NIδϕ
I
k⃗

+
1

2
NIJ

∫
d3p

(2π)3
δϕI

k⃗−p⃗
ϕJp⃗ + . . .
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Here, we have dropped the˜as well as introduced a new notation, NI = ∂N
∂ϕI , NIJ = ∂N

∂δϕI
∂N
∂δϕI

∂N
∂δϕJ , etc.

⟨ζk⃗1
ζk⃗2

ζk⃗3
⟩ = NINJNK

〈
δϕI

k⃗1
δϕJ

k⃗2
δϕK

k⃗3

〉
+

1

2
NINJNKL

∫
d3p

(2π)3

〈
δϕI

k⃗1
δϕJ

k⃗2
δϕK

k⃗3−p⃗
ϕLp⃗

〉

(2 − permutations) + . . .

Using wick’s theorem, the second term becomes:

(2nd) =
1

2
NINJNKL

∫
d3p

(2π)3

{
⟨δϕI

k⃗1
δϕJ

k⃗2
⟩⟨δϕK

k⃗3−p⃗
δϕLp⃗2

⟩ + ⟨δϕI
k⃗1
δϕK

k⃗3−p⃗
⟩⟨δϕJ

k⃗2
δϕLp⃗ ⟩

+⟨δϕI
k⃗1
δϕLp⃗ ⟩⟨δϕJk⃗2

δϕK
k⃗3−p⃗

⟩
}

Without loss of generality, we can write

⟨δϕI
k⃗1
δϕJ

k⃗2
⟩ = (2π)3δ(3)(k⃗1 + k⃗2)δIJPϕ(k1)

Then,

(2nd) =
1

2
NIN

INK
K (2π)3δ(3)(k⃗1 + k⃗2)δ(3)(k⃗3)Pϕ(k1)Pϕ(k3)

∫
d3p 1

+NINJN
IJ(2π)3δ(3)(k⃗1 + k⃗2 + k⃗3)Pϕ(k1)Pϕ(k2)

However, the first line (involving δ(3)(k⃗3)) vanishes because Pϕ(k3 = 0) = 0. Therefore, if δϕI
k⃗
’s are all gaussian,

then the leading order result is:

⟨ζk⃗1
ζk⃗2

ζk⃗3
⟩ = (2π)3δ(3)(k⃗1 + k⃗2 + k⃗3)NINJN

IJ(Pϕ(k1)Pϕ(k2) + permutation)

On the other hand, the power spectrum of ζ is related to that of δϕ as

⟨ζk⃗1
ζ⋆
k⃗2
⟩ = (2π)3δ(3)(k⃗1 − k⃗2)Pζ(k⃗1) = NINJ

〈
δϕI

k⃗1
δϕJ⋆

k⃗2

〉

= (2π)3δ(3)(k⃗1 − k⃗2)NIN
IPϕ(k⃗1)

Hence,
∴ Pζ(k⃗) = NIN

IPϕ(k⃗)

writing the bispectrum as:

⟨ζk⃗1
ζ⋆
k⃗2
⟩ = (2π)3δ(3)(k⃗1 + k⃗2 + k⃗ − 3)Bζ(k1, k2, k3)

we find,
Bζ(k1, k2, k3)

Pζ(k1)Pζ(k2) + perm.
=
NINJN

IJ

(NKNK)2

Let us compute this in the single field limit (ϕ ≡ ϕ1):

Bζ(k1, k2, k3)

Pζ(k1)Pζ(k2) + perm.
=

∂2N
∂ϕ2

ini(
∂N
∂ϕini

)2

Here,
∂N

∂ϕini
= −H

ϕ̇

∣∣∣∣
ini

= − 1

Mpl

1√
2ϵ

where ϵ =
1

2Mpl2

ϕ̇2

H2

and thus,
∂2N

∂ϕ2ini
=

1

2

∂ ln ϵ

∂ϕini

Therefore, for a single field model in which δϕ is Gaussian, we obtain

Bζ(k1, k2, k3)

Pζ(k1)Pζ(k2) + perm.
=

1

2

∂ ln ϵ
∂ϕini

∂N
∂ϕini

= 2ϵ− η

Indeed, we find Bζ/Pζ
2 ∼ O

(
10−2

)
, which is too small to be observed, and thus detection of this quantity would

rule out single-field slow-roll inflation models.

60



6.7.1 Squeezed Bispectrum

Since, Pζ(k) is nearly scale invariant, it scales as Pζ ∝ 1/k3. This means that Bζ(k1, k2, k3) for the above local-
form non-Gaussianity, peaks when one of the ki’s is very small. If we order k1 ≥ k2 ≥ k3, then this bispectrum
peaks when k3 << k2 ≈ k1.

For this limit, we find:

Bζ(k1, k2, k3 → 0) → 2NINJN
IJ

(NKNK)2
Pζ(k1)Pζ(k3)

= 2(2ϵ− η)Pζ(k1)Pζ(k3) (for single field)

6.7.2 Single-Field Theorem (Consistency Condition)

Actually, the Squeezed-limit bispectrum is much more powerful than just ruling out single-field Slow-Roll model.
It can be used to rule out ALL Single-field models,regardless of the models . “Single-field Theorem” states:

Bζ(k1, k2, k3 → 0) → (1 − nσ)Pζ(k1)Pζ(k3)

for All single-field inflation models! So, here we are gonna use slightly non-standard approach to show this
relation. We are starting with this formula:

⟨ζk⃗1
ζk⃗2

ζk⃗3
⟩ = NINJNK⟨δϕI

k⃗1
δϕJ

k⃗2
δϕK

k⃗3
⟩

+NINJN
IJ(2π)3δ3(k⃗1 + k⃗2 + k⃗3)[Pϕ(K1) + Pϕ(K2) + (perm)]

While, we’ve ignored the first term by assuming that δϕIs Gaussian. However, for single-field model, the second
term is small (of order ϵ). But at the level of O(ϵ), we cannot ignore the first term, as there exist interactions
of δϕ during inflation, making δϕ slightly non-Gaussian.

While the precise computation of first term requires Quantum Field Theory (and was done self-consistently
by Maldacena(2003)), we make a short cut by considering only the squeezed limit, k3 ≈ k2 ≈ k1. To understand
the situation better, let us call:

k3 → kL(for Long wavelength)

and
k1, k2 → kS(for Short wavelength)

where L is much larger than H−1, ζ is much smaller. Then, we can write first term as

⟨δϕk⃗1
δϕk⃗2

δϕk⃗3
⟩ = ⟨δϕk⃗S

δϕk⃗S
δϕk⃗L

⟩
= ⟨⟨δϕk⃗S

δϕk⃗S
⟩Lδϕk⃗L

⟩
Here, ⟨δϕk⃗S

δϕk⃗S
⟩L is the 2-point function of the Short mode, Given that there exist the Long Mode. In single

field mode, there is only one dynamical degree of freedom ζ. Therefore, we need to compute ⟨δϕk⃗S
δϕk⃗S

⟩ in the

presence of ζL. We know, gij = a2(t)e2ζL , eζL amounts rescaling of co-moving coordinate. The result is

⟨δϕk⃗S
δϕk⃗S

⟩L = ⟨δϕk⃗S
δϕk⃗S

⟩ − d ln k3SPϕ(kS)

d ln kS
Pϕ(kS)ζL

For single-field result Pϕ(k) ∝ H2
/k3 and dN = d ln k, we find

d ln k3Pϕ(k)

d ln k
=
d lnH2

dϕ

dϕ

dN
= −2ϵ

With this result, we find
(
∂N

∂ϕini

)3

⟨δϕk⃗1
δϕk⃗2

δϕk⃗3
⟩ =

(
∂N

∂ϕini

)3

(+2ϵ)Pϕ(k1)⟨ζk⃗1+k⃗2
δϕk⃗3

⟩

= +2ϵPζ(k1)Pζ(k3) × (2π)3δ(3)(k⃗1 + k⃗2 + k⃗3) (for k3 → 0)

Combining this with second term

⟨ζk⃗1
ζk⃗2

ζk⃗3
⟩ k3→0−−−→ (2π)3δ(3)(k⃗1 + k⃗2 + k⃗3) × {+2ϵPζ(k1)Pζ(k3) + (4ϵ− 2η)Pζ(k1)Pζ(k3)}

= (2π)3δ(3)(k⃗1 + k⃗2 + k⃗3) × (6ϵ− 2η)Pζ(k1)Pζ(k3)

= (2π)3δ(3)(k⃗1 + k⃗2 + k⃗3) × (1 − nS)Pζ(k1)Pζ(k3)

Therefore, if we find that the squeezed limit bispectrum has exceeded 1−ns = O
(
10−2

)
, all single field models

are ruled out.
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6.8 fNL

The non-linear parameter, fNL, is used to characterize
Bζ

P 2
ζ

as follows:

6

5
fNL =

Bζ(k1, k2, k3)

Pζ(k1)Pζ(k2) + Pζ(k1)Pζ(k3) + Pζ(k2)Pζ(k3)

The current best bound on fNL from the WMAP 7-year data is:

fNL = 32 ± 21 (68% CL)

or
−10 < fNL < 74 (95% CL).

Note: The factor of 6
5 arises because fNL was originally defined for curvature perturbations during the matter

era in Newtonian Gauge, where ϕ = 3
5ξ. Thus, the definition is:

2fNL ≡ Bζ(k1, k2, k3)

Pζ(k1)Pζ(k2) + Pζ(k1)Pζ(k3) + Pζ(k2)Pζ(k3)
.

6.9 Trispectrum and Multi-field consistency condition

If fNL >> 1 is found by, e.g. Plank, what should we do? Single fields are gone, should we then study multi-field
models? Is there any way we can rule out multi-field models also? Perhaps the 4-point function can be used to
test multi-field models. Let us start from the local-form (δN) non-Gaussian.

ζ = NIδϕ
I +

1

2
NIJδϕ

IδϕJ +
1

6
NIJKδϕ

IδϕJδϕK + . . .

The 4-point function can be obtained from:

τNL : (1st) × (1st) × (2nd) × (2nd)

gNL : (1st) × (1st) × (1st) × (3rd)

The local form non-Gaussianity then yields:

⟨ζk⃗1
ζk⃗2

ζk⃗3
ζk⃗4

⟩ = (2π)3δ3(k⃗1 + k⃗2 + k⃗3 + k⃗4)

×
[
τNLPζ(k⃗1)Pζ(k⃗2){Pζ(|⃗k1 + k⃗3|) + Pζ(|⃗k1 + k⃗4|)} + 10 perm

+ gNL
54

25
[Pζ(k⃗1)Pζ(k⃗2)Pζ(k⃗3) + 3 perm]

]

The τNL term peaks at “small diagonal limit”, and the gNL term peaks at “squeezed limit”. Both τNL and
gNL can be given in terms of NI , NIJ etc. The leading order contributions2 are:

τNL =
(NIJN

J)(N IKNK)

(NLNL)3

54

25
gNL =

NIJKN
INJNK

(NLNL)3

Where we have the factor 54/25 in front of gNL for Historical reasons, similar to 6
5 for fNL. Of these, τNL is

of great interest. At this order, TNL is given by NI and NIJ . On the other hand, fNL is also given by a

combination of NI and NIJ , and thus there should be a relation between the two. (Recall 6
5fNL = NIJN

INJ

(NLNL)3/2
.)

To see this, define the following new variables:

aI =
NIJN

J

(NLNL)3/2

bI =
NI

(NLNL)1/2

2If these terms vanish due to symmetry reasons, then one needs to go to next order terms
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Then, we get

6

5
fNL = aIb

I

τNL = (aIa
I)(bJb

J)

The Cauchy-Schwarz inequality, (aIa
I)(bJb

J) ≥ (aIb
I)2, gives

τNL ≥
(

6

5
fNL

)2

(6.3)

This is the (tree-level) Suyama-Tanaguchi inequality.[18]

Is τNL ≥
(

5
6fNL

)2
general?

The derivation of this relation relies on the “tree-level approximation,” where:

ζ = NIδϕ
I +

1

2
NIJδϕ

IδϕJ +
1

6
NIJKδϕ

IδϕJδϕK + . . .

The bispectrum (fNL) arises from (1st)×(1st)×(2nd) terms, while τNL comes from (1st)×(1st)×(2nd)×(2nd).
However, for certain models (due to symmetry), these terms can vanish, and the leading order contributions

may instead arise from:

fNL : (2nd) × (2nd) × (2nd) TNL : (2nd) × (2nd) × (2nd) × (2nd)

In such cases, it is not immediately clear if any general inequalities exist between these terms. However,

the latest studies suggest that τNL ≥
(
5
6fNL

)2
may still hold for general multi-field inflation theories. This

inequality can serve as a key test for the inflationary mechanism generating fluctuations.

6.10 Measuring non-Gaussianity from CMB

To understand how we determine fNL = 32 ± 21 from the WMAP data, it is useful to first work through a
simpler example: estimating the skewness, k3 = ⟨x3⟩, for a zero-mean, unit-variance Gaussian distribution.
Using the ”Taylor-expanded” PDF (up to k3), we have:

P (x) =
1√
2πσ

e
−x2

2σ2

[
1 +

k3
6

(
x3

σ6
− 3

x

σ4

)
+ . . .

]

The best-fit k3 can be found by maximizing this PDF with respect to k3. This is essentially using Bayes’
Theorem, interpreting P (x|k3) as P (k3|x):

⟨∂ lnP (x)

∂k3
⟩ = 0

Expanding lnP (x) up to k23:

lnP (x) = const +
1

6

(
x3

σ6
− 3

x

σ4

)
k3 −

[
1

6

(
x3

σ6
− 3

x

σ4

)]2
k23
2

+ . . .

Taking the derivative with respect to k3 and setting it to zero, we get:

⟨ 1

36

(
x6

σ12
− 6

x4

σ10
+ 9

x2

σ8

)
⟩k3 = ⟨1

6

(
x3

σ6
− 3

x

σ4

)
⟩

On evaluating the left-hand side (using ⟨x6⟩ = 15σ6 and ⟨x4⟩ = 3σ4), we find:

LHS =
1

6

1

σ6

Thus, the estimator for k3 is:

k3 = ⟨x3⟩ − 3σ2⟨x⟩
For a zero-mean variable (which we assumed), the second term vanishes, and we obtain k3 = ⟨x3⟩. In practice,
we don’t access the ensemble average directly, so the actual estimator becomes:

k3 =

1
6

∑
i

(
x3
i

σ6
i
− 3 xi

σ4
i

)

1
6

∑
i

1
σ6
i

where i refers to the i-th measurement. This form is quite sensitive and directly applicable to measurements
from the WMAP data.

63



PDF for CMB

In order to write down the PDF of CMB temperature (or polarization) anisotropy, we need to know how
to generalize the Gram-Charlier (or Edgeworth) expansion to a multivariable case. First, let us start from a
Gaussian PDF. Temperature anisotropy (i.e., Temperature in a given direction n̂ minus the mean temperature),
δT (n̂), obeys

P ({δT (n̂i)}) =
1

(2π)Npix/2|ξ|1/2
e−

1
2

∑
ij δT (n̂i)(ξ

−1)ijδT (n̂j)

where,
ξij = ⟨δT (n̂i)δT (n̂j)⟩

and
n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)

It is more convenient to work in “Fourier space”, however, since we deal with a field on 2-sphere, we can
not use the usual Fourier transformation on the full sky (unless we deal with a small section on the sky which
may be approximated as flat). We thus use the spherical harmonic transform:

δT (n̂) =
∑

lm

almYlm(n̂)

or

alm =

∫
dn̂δT (n̂)Y ⋆

lm(n̂)

Then, a gaussian PDF becomes

P ({alm}) =
1

(2π)Nharm/2|C|1/2
e−

1
2

∑
lm,l′m′a⋆lm(C−1) lm

l′m′
al′m′

where
C lm

l′m′
= ⟨a⋆lmal′m′⟩

For translationally and rotationally invariant temperature anisotropy, we have

C lm
l′m′

= Clδll′δmm′

However, even if the CMB itself is translationally and rotationally invariant, noise and foreground emission
may not be. Thus, for generality we use Clm,l′m′ , without approximating it to be diagonal.

6.10.1 Multivariate Expansion of PDF

We can now “Taylor expand” a Gaussian PDF of alm.

P ({aℓm}) =
1

(2π)Nharm/2|C|1/2 exp


−1

2

∑

ℓm
ℓ′m′

a∗ℓm(C−1) lm
l′m′

al′m′




×
{

1 +
1

6

∑

all lm

⟨al1m1
al2m2

al3m3
⟩
[
(C−1a)l1m1

(C−1a)l2m2
(C−1a)l3m3

]

−1

6

∑

all lm

⟨al1m1
al2m2

al3m3
⟩
[
3(C−1) l1m1

l2m2

(C−1a)l3m3

]
+ . . .

}

If we compare this with a uni-variate case:

P (x) =
1√

2πσ2
exp

(
− x2

2σ2

)[
1 +

κ3
6

(
x3

σ6
− 3

x

σ4

)
+ . . .

]

The correspondence is clear. The above PDF can be used to derive an estimator for the full bispectrum,
⟨aℓ1m1

aℓ2m2
aℓ3m3

⟩, or the “m-averaged bispectrum”,

Bℓ1ℓ2ℓ3 ≡
∑

all m

(
l1 l2 l3
m1 m2 m3

)
⟨aℓ1m1aℓ2m2aℓ3m3⟩
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However, given a low signal-to-noise ratio, it is more useful to fit the data to a model bispectrum with a fixed
shape (i.e., dependence of l1, l2, l3), and find the amplitude, such as fNL. This is what we are going to do now.
Let’s say, we have a model shape Bl1l2l3 , such that

Bl1l2l3 = fNLBl1l2l3

Then, the estimator is given by

fNL =

1
6

∑
all lm

(
l1 l2 l3
m1 m2 m3

)
Bl1l2l3

[
(C−1a)l1m1

(C−1a)l2m2
(C−1a)l3m3

− 3(C−1) l1m1
l2m2

(C−1a)l3m3

]

1
6

∑
all lm

∑
all l′m′

(
l1 l2 l3
m1 m2 m3

)
Bl1l2l3(C−1) l1m1

l′1m′
1

(C−1) l2m2
l′2m′

2

(C−1) l3m3
l′3m′

3

Bl′1l
′
2l

′
3

(
l′1 l′2 l′3
m′

1 m′
2 m′

3

) (6.4)

For a diagonal Cl,

fNL =

1
6

∑
all lm

(
l1 l2 l3
m1 m2 m3

)
Bl1l2l3

[
al1m1

Cl1

al2m2

Cl2

al3m3

Cl3
− 3δl1l2δm1m3

al3m3

Cl1
Cl2

]

1
6

∑
all lm

(
l1 l2 l3
m1 m2 m3

)2 B2
l1l2l3

Cl1
Cl2

Cl3

Comparing this to the estimator for the skewness k3

k3 =

1
6

∑
i

(
x3
i

σ6
i
− 3 xi

σ4
i

)

1
6

∑
i

1
σ6
i

The correspondence is again clear. This is the estimator used by WMAP team to obtain fNL = 32 ± 21.

6.11 Relation between alm and ζk⃗

We observe δT (n̂) or (alm). However, we wish to obtain information about ζk⃗ from the observed alm. How are
they related?
Let us begin with the simplest case. On very large angular scales (larger than the sound horizon at z⋆ = 1090),
the Sach-Wolfe approximation may be used. It gives

δT (n̂)

T
= −1

5
ζ(n̂r⋆, z⋆)

where r⋆ is the comoving angular diameter distance to z⋆. From this, it is clear that are seeing only a slice of
3D field, ζ(q⃗). For example, if we take a tiny section of the sky centered on a ẑ direction:
We can perform the 2d Fourier transform:

δT̃

T
(l) =

∫
d2θ

δT

T
(θ⃗)e−i⃗l·θ⃗

where θ⃗ = (θ cosϕ, θ sinϕ). Then we find the relation between δT̃ (⃗l) and ζ̃(k⃗) as

δT̃

T
(⃗l) =

∫
d2θe−i⃗l·θ⃗

∫
d3k

(2π)3
eik⃗·n̂r⋆

(
−1

5
ζ̃k⃗

)

using n̂ ≈ (θ⃗, 1),

=

∫
d2θe−i⃗l·θ⃗

∫
d3k

(2π)3
eik⃗⊥·θ⃗r⋆eik∥r⋆

(
−1

5
ζ̃k⃗

)

where k⃗ = (k⃗⊥, k∥). The integral over θ⃗ yields a 2d Dirac delta function:

=

∫
d3k

(2π)3
(2π)3δ2(k⃗⊥r⋆ − l⃗)eik∥r⋆

(
−1

5
ζ̃k⃗

)

∴
δT̃

T
=

1

r2⋆

∫
dk∥
2π

eik∥r⋆

[
−1

5
ζ̃

(
k⃗⊥ =

l⃗

r⋆
, k∥

)]

From this result, it is clear that we are mostly sensitive to the k⃗ that are perpendicular to our line of sight, and
informartion on k∥ is smeared out by the integral. This is sad news: this limits the statistical power of CMB,
which is really a 2-d object. It is possible to retrieve the full 3-d information by using the large scale structure
density field, More later.
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6.11.1 Full Sky

For the full sky analysis, we must work with spherical harmonics. Again in the Sach-Wolfe limit,

alm =

∫
dn̂Y ⋆

lm(n̂)

∫
d3k

(2π)3
eik⃗·n̂r⋆

(
−1

5
ζ̃k⃗

)

Now, using partial wave decomposition of plane waves (called “Rayleigh’s Formula”)

eik⃗·n̂r⋆ =
∑

lm

4π(i)lJl(kr⋆)Ylm(n̂)Y ⋆
lm(k̂)

we obtain,

alm =

∫
dn̂Y ⋆

lm(n̂)

∫
d3k

(2π)3

(
−1

5
ζ̃k⃗

)∑

l′m′

4π(i)l
′
Jl′(kr⋆)Yl′m′(n̂)Y ⋆

l′m′(k̂)

Using
∫
dn̂Yl′m′(n̂)Y ⋆

l′m′(n̂) = δll′δmm′ and summing over all l′ and m′,

∴ alm = 4πil
∫

d3k

(2π)3
Jl(kr⋆)Y ⋆

lm(k⃗)

(
−1

5
ζ̃k⃗

)

The fact that we pick up k⃗⊥ is obscured in this expression. Now let us go beyond the Sach-Wolfe limit, and
include all the relevant effect. We replace

−1

5
Jl(kr⋆) → g

(s)
Tl (k)

and write

alm = 4πil
∫

d3k

(2π)3
g
(s)
Tl (k))Y ⋆

lm(k⃗)ζ̃k⃗

where g
(s)
Tl (k) is called “radiation transfer function”, which can be computed using linear Boltzmann code such

as CMBFast, CAMB etc. The power spectrum is given by:

Cl = ⟨|alm|2⟩ =
2

π

∫
k2dkPζ(k)g

(s)
Tl (k)

6.11.2 Local-form CMB Bispectrum

In order to make a better contact with the literature, let us now relate alm to Φ (Curvature perturbation in
matter era, Newtonian gauge):

alm = 4πil
∫

d3k

(2π)3
Φl(k)g

(s)
Tl (k)Y ∗

lm(k̂)

Now, for the local-form bispectrum:
〈

Φk⃗1
Φk⃗2

Φk⃗3

〉
= (2π)3δ(3)(k⃗1 + k⃗2 + k⃗3) × 2fNL [PΦ(k1)PΦ(k2) + (perm.)]

The CMB bispectrum is given by:

⟨al1m1
al2m2

al3m3
⟩ = gl1l2l3m1m2m3

× 2fNL

∫
r2dr [βl1(r)βl2(r)αl3(r) + (perm.)]

where

gl1l2l3m1m2m3
≡
∫
dn̂Yl1m1

(n̂)Yl2m2
(n̂)Yl3m3

(n̂)

αl(r) ≡
2

π

∫
k2dkgTl(k)Jl(kr)

βl(r) ≡
2

π

∫
k2dkPΦ(k)gTl(k)Jl(kr)

Using this in the estimator given in (6.4), we can estimate fNL from the data!! In simpler models fNL is
scale independent and constant, however, as often in cosmological collider physics, fNL will not just be scale
dependent but also inherit certain oscillatory features from the bispectrum. The constant value just suggests
that any truly physical imprint of that long mode on short scales would be suppressed by (kI/k1)2 and is
therefore extremely small. But in our study of three point and four point correlators, we had introduced a
heavy spectator field that interacts with inflaton. In the squeezed limit, exchange of that extra field leaves a
real, physical modulation of the short modes by the long mode. Mathematically you find a new term in the
squeezed bispectrum that scales like (kI/k1)3/2 not (kI/k1)2. That’s a larger effect in the limit kI → 0. With
the 12cm tomography the prospects seem to be better, at least in theory, to probe new physics from the CMB.
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Chapter 7

Discussion and Conclusion

Over the course of this thesis, we have built a coherent framework for understanding how quantum fields in
an inflating spacetime give rise to the seeds of cosmic structure—and how those seeds retain tell-tale signa-
tures of heavy particles and nontrivial interactions. Beginning in Chapter 2 with the in–in formalism, we
developed the machinery to compute real-time expectation values in a time-dependent background. In Chap-
ter 3 we revisited quantum field theory in curved spacetime, emphasizing Bogoliubov transformations and
the observer-dependence of the vacuum. Chapter 4 then applied these ideas to gravitational particle pro-
duction—first via analogies with a forced harmonic oscillator, then in explicit models (Bernard–Duncan and
de Sitter space).

In Chapters 5 and 6, we showed how those very particles manifest in the statistics of the Cosmic Microwave
Background. In particular:

• Power spectrum (two-point function): we recovered the nearly scale-invariant form characteristic of
slow-roll inflation, with small corrections due to particle production and time-dependent masses.

• Bispectrum (three-point function): we derived explicit templates showing oscillatory “resonant” features
whose frequency and phase encode the mass and spin of intermediate fields. These features deviate from
the vanilla single-field consistency condition and open a direct window onto new high-energy degrees of
freedom.

• Trispectrum (four-point function): we identified the collapsed-limit signal produced by pairwise ex-
change of heavy scalars, demonstrating how its momentum dependence sharpens and complements the
bispectrum search.

In later chapters, we investigated how the particle production described earlier leaves an imprint in the
higher-order correlation functions—particularly the bispectrum and trispectrum—showing that non-adiabatic
evolution and Bogoliubov mixing generate characteristic oscillatory modulations and angular dependence.
These “cosmological collider” signatures encode the mass spectrum and spin information of transient fields
during inflation, turning the sky itself into a laboratory for high-energy physics.

Key Lessons and Implications

• Observer-independence vs. physical imprint. Although the notion of particles depends on the
choice of vacuum (e.g. Minkowski vs. Rindler vs. de Sitter), the induced correlations in the curvature
perturbation are physical and measurable in CMB anisotropies (aℓm ↔ ζk).

• Non-Gaussianity as a collider. Higher-point functions are not mere corrections to the Gaussian
power spectrum, but carry orthogonal information: oscillatory shapes from heavy-field exchange, angular
patterns from spin, and scale-dependence from nontrivial time evolution.

• Complementarity of bispectrum and trispectrum. While the bispectrum is often the first nonzero
probe of interactions, the trispectrum in its collapsed limit can strongly enhance sensitivity to weakly
coupled or very massive states.

Outlook

Current CMB experiments (e.g. Planck, ACTPol) have already placed interesting bounds on simple resonant
bispectrum templates. However, next-generation surveys—Simons Observatory, CMB-S4, and LiteBIRD—will
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improve sensitivity to non-Gaussian oscillations by up to an order of magnitude. Moreover, large-scale structure
surveys (e.g. DESI, Euclid) can access complementary squeezed-limit signals in galaxy clustering and weak
lensing.

On the theoretical front, several avenues remain rich for exploration:

• Loop corrections & stochastic effects: understanding the robustness of resonant features under radiative
corrections and infrared backreaction.

• Beyond single-exchange diagrams: extending templates to multiple interacting sectors, non-Abelian sym-
metries, or gauge field production.

• UV completion: embedding these phenomenological signals into string-inspired or quantum gravity frame-
works, thereby tying observational templates to microscopic parameters.

In closing, this thesis has shown that by treating the early universe as a quantum detector, we can transform
primordial correlation functions into precise probes of inflationary particle physics. As observational and
theoretical tools continue to advance, the prospect of discovering heavy relics from the dawn of time grows
ever more promising—bringing us closer to answering the age-old question of how the cosmos began and what
fundamental laws governed its birth.
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Appendix: Massive Field in de Sitter
spacetime

The action for a massive scalar field in an FRW background is

S =

∫
d4x

√−g
[
−1

2
gµν∂µχ∂νχ− 1

2
m2χ2

]

=
1

2

∫
dηd3x

[
a2(η)

(
(χ′)2 − (∇χ)2

)
−m2a4(η)χ2

]
.

Introducing the canonically-normalized field u = aχ, and substituting a(η) = −(Hη)−1, the action becomes

S =
1

2

∫
dηd3x

[
(u′)2 − (∇u)2 −

(
m2a2 − a′′

a

)
u2
]

=
1

2

∫
dηd3x

[
(u′)2 − (∇u)2 −

(
m2/H2 − 2

η2

)
u2
]
.

The equation of motion (in Fourier space) then is

u′′k +

(
k2 +

m2/H2 − 2

η2

)
uk = 0.

Defining x ≡ −kη, this becomes

x2
d2uk
dx2

+

(
x2 − ν2 +

1

4

)
uk = 0, where ν ≡

√
9

4
− m2

H2
.

Writing uk(η) ≡ √
x g(x), this takes the form of a Bessel equation

x2
d2g

dx2
+ x

dg

dx
+ (x2 − ν2)g(x) = 0,

which has the following solution in terms of Hankel functions:

g(x) = c1H
(1)
ν (x) + c2H

(2)
ν (x).

Using

H(1)
ν (x)

x→∞−−−−→
√

2

πx
ei(x−

1
2νπ− 1

4π),

H(2)
ν (x)

x→∞−−−−→
√

2

πx
e−i(x− 1

2νπ− 1
4π),

the early-time limit of the canonically-normalized field becomes

lim
−kη→∞

uk(η) =

√
2

π

(
c1e

− i
4π(1+2ν)e−ikη + c2e

i
4π(1+2ν)eikη

)
.

This matches the Bunch-Davies initial condition,

lim
−kη→∞

uk(η) =
1√
2k
eikη,
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if c1 = 0 and c2 = e−i 1
4π(1+2ν)

√
π/(4k), which fixes the solution to be

uk(η) = e−
i
4π(1+2ν)

√
π

4

√−ηH(2)
ν (−kη).

The de Sitter mode function for the massive field, fk = uk/a, then is

fk = H

√
π

2
e−

i
4π(1+2ν)(−η)

3/2H(2)
ν (−kη) (where ν =

√
9
4 − m2

H2 )

At late time:

fk = H

√
π

2
e−

i
4π(1+2ν)(−η)

3/2 i

π

[
Γ(ν)

(−kη
2

)−ν

+ eiπνΓ(−ν)

(−kη
2

)ν
]

= iH

√
2

πk3
e−

iπ
4

[
e−iπν

2 Γ(ν)

(−kη
2

) 3
2−ν

+ ei
πν
2 Γ(−ν)

(−kη
2

) 3
2+ν
]

For very massive fields m >> H, we have ν ≈ im/H

fk = iH

√
2

πk3
e−

iπ
4

[
e
πm/2HΓ

(
im

H

)(−kη
2

) 3
2− im

H

+ c.c

]

In coordinate time:

fk = iH

√
2

πk3
e−

iπ
4

[
e
πm/2HΓ

(
im

H

)(
ke−Ht

2H

) 3
2− im

H

+ c.c

]

= iH

√
2

πk3
e−

iπ
4

[
e
πm/2HΓ

(
im

H

)(
k

2H

) 3
2− im

H

e
−3Ht/2−imt + c.c

]
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Appendix: Conformal symmetry

In this appendix, we will discuss the concepts related to conformal bootstrap, where we essentially solve the
conformal Ward identity, it is convenient to introduce conformal symmetry and the constraints it imposes on
the correlation function beforehand. Then, we can discuss the derivation of conformal Ward identities.

Conformal Symmetry

Conformal symmetry is defined as an angle-preserving symmetry in the complex plane. However, this definition
is not wrong but isn’t very useful either. It requires us to define what constitutes an angle to fully comprehend
it. There has been discussion in the literature where physicists have argued that such a definition only makes
sense when we are only concerned with spatial directions. In special relativity and beyond, one must incorporate
time as well, and the notion of an angle with time is not a very well-defined object. Therefore, an alternative
that also holds for angle-preserving transformations is given by:

x→ λx

Note that, this is not a general coordinate transformation which relabels the coordinates but it is actually
changing the underlying geometry. Under this transformation, we observe:

cos θ =
x⃗ · y⃗
|x||y|

=
gµνx

µyν√
gµνxµxν

√
gµνyµyν

under conformal transformation gµν → Ω(x)gµν

=
Ω(x)gµνx

µyν√
Ω(x)gµνxµxν

√
Ω(x)gµνyµyν

= cos θ

Therefore, conformal transformation could be defined as one which scales the metric and as such preserves the
angles.

g′µν(x′) = Ω(x)gµν(x) (with Ω(x) > 0)

The approach to studying a Conformal Field Theory (CFT) is very different from that of Quantum Field Theory
(QFT). In QFT, we typically write the Lagrangian first and then study the equations of motion. However, this
is rarely the case in CFT. Instead, we focus little on writing the Lagrangian but rather utilize the conformal
symmetry directly to guess the functional form of the correlation function. This approach is known as the
conformal bootstrap.

Infinitesimal Conformal Transformation

The fundamental essence of conformal transformations resides in their infinitesimal form, which serves as a
crucial tool for investigating how fields transform under these symmetries. It plays a pivotal role in defining
the generator of the conformal group and, subsequently, constraining the set of possible correlators that are
compatible with conformal symmetry. Any infinitesimal transformation can be expressed as:

x′µ = xµ + ϵ µ(x)

infinitesimal
and subsequently,

xµ = x′µ − ϵµ(x)
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therefore, the metric transforms like:

g′µν =
∂xα

∂x′µ︸ ︷︷ ︸
δαµ−∂µϵ

α(x)

∂xβ

∂x′ν
gαβ

=

[
δαµ − ∂ϵα(x)

∂x′µ

] [
δβν − ∂ϵβ(x)

∂x′ν

]
gαβ

= δαµδ
β
ν gαβ − δβν ∂µϵ

α(x)gαβ − δαµ∂νϵ
β(x)gαβ + O(ϵ2)

Ω(x)gµν = gµν − ∂µϵν − ∂νϵµ

In the third step, we used chain rule on ϵα(x) and ignored O((∂ϵ)2) terms. From the last line, it is reasonable
to expect that:

∂µϵν + ∂νϵµ ∝ gµν

∂µϵν(x) + ∂νϵµ(x) = f(x)gµν (7.1)

Contracting Indicies

∂µϵµ(x) + ∂µϵµ(x) = f(x)δµµ

2(∂ · ϵ) = d f(x)

dimension of spacetime

f(x) =
2

d

∂ϵµ(x)

∂xµ

Substituing back in (7.1)

∂µϵν(x) + ∂νϵµ(x) =
2

d
(∂ · ϵ) gµν (7.2)

Now, we operate by ∂ν

∂

∂x′ν
[∂µϵν(x) + ∂νϵµ(x)] =

∂

∂x′ν

(
2

d
∂ · ϵ(x) gµν

)
assuming flat metric

∂µ ∂
νϵν︸︷︷︸
∂·ϵ

+ ∂ν∂ν︸ ︷︷ ︸
□

ϵµ =
2

d
gµν∂

ν∂ · ϵ

∂µ(∂ · ϵ) + □ϵ =
2

d
∂µ(∂ · ϵ)

Operating by ∂ν

∂ν [∂µ(∂ · ϵ) + □ϵ] = ∂ν

[
2

d
∂µ(∂ · ϵ)

]

(
1 − 2

d

)
∂ν∂µ(∂ · ϵ) + □(∂νϵµ) = 0 (7.3)

under relabeling µ↔ ν
(

1 − 2

d

)
∂µ∂ν(∂ · ϵ) + □(∂µϵν) = 0 (7.4)

adding (7.3) and (7.4)

2

(
1 − 2

d

)
∂µ∂ν(∂ · ϵ) + □[∂µϵν(x) + ∂νϵµ(x)︸ ︷︷ ︸

2
d (∂·ϵ)gµν

] = 0

(
1 − 2

d

)
∂µ∂ν(∂ · ϵ) +

1

d
□(∂ · ϵ)gµν = 0

[gµν□ + (d− 2)∂µ∂ν ] (∂ · ϵ) = 0 (7.5)

Contracting the indicies

[d□ + (d− 2)□](∂ · ϵ) = 0
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2(d− 1)□(∂ · ϵ) = 0

hence,

(d− 1)□(∂ · ϵ) = 0 (7.6)

if d = 1 =⇒ any ϵµ(x) satisfies (7.6), therefore, is conformal transformation. It is interesting to note that any
1D QFT is conformal field theory, but for our purpose it’s not very useful. We will be concerned with d ̸= 1
for the rest of this notes unless stated otherwise. Consider the action of ∂α on (7.2) and then cyclic relabeling
of incidies as α→ µ→ ν

∂α[∂µϵν(x) + ∂νϵµ(x)] =
2

d
∂αgµν(∂ · ϵ) (7.7)

∂µ[∂νϵα(x) + ∂αϵν(x)] =
2

d
∂µgνα(∂ · ϵ) (7.8)

∂ν [∂αϵµ(x) + ∂µϵα(x)] =
2

d
∂νgαµ(∂ · ϵ) (7.9)

Adding the first two equation and subtracting from the last, we get [(7.7) + (7.8) − (7.9)]:

�2∂α∂µϵν = �2

d
[gµν∂α + gνα∂µ − gαµ∂ν ](∂ · ϵ)

∂α∂µϵν =
1

d
[gµν∂α + gνα∂µ − gαµ∂ν ](∂ · ϵ) (7.10)

Therefore, the most general conformal transformation is of the type:

x′µ = xµ + aµ + bµνx
ν + cµναx

νxα
︸ ︷︷ ︸

ϵµ

Where, aµ, bµν and cµνα are parameters relevant to their transformation. The goal here is simple:

• First find the relevant transformations

• Then based on the transformation rule, find the generators.

For ϵµ = aµ:

x′µ = xµ + aµ

= xµ + δµν a
ν

= xµ + (∂νx
µ)aν

= [1 + iaν(−i∂ν)]xµ

Thus, the generator of translation is Pµ − i∂µ
1. For ϵµ = bµαx

α, we refer to (7.2)

∂µϵν(x) + ∂νϵµ(x) =
2

d
(∂ · ϵ)gµν

∂µ(bναx
α) + ∂ν(bµαx

α) =
2

d
(∂µbµαx

α)gµν

bναδ
α
µ + bµαδ

α
ν =

2

d
(bµαg

αµ)gµν

bνµ + bµν =
2

d
bααgµν

bνµ + bµν
2

=
1

d
bααgµν

now,

bµν =
bµν − bνµ

2
+
bµν + bνµ

2
= Mµν + λgµν

If bµν = λgµν(Mµν = 0)

x′µ = xµ + bµνx
ν

1if we use [1− aν(∂ν)]xµ as the definition, then Pµ = i∂µ would be the generator
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= xµ + λgµα gανx
ν

︸ ︷︷ ︸
xα

= xµ + λxµ

= xµ + λxνδµν

= xµ + λxν(∂νx
µ)

= xµ + iλxν(−i∂νxµ)

= [1 + iλ(−ixν∂ν)]xµ

Thus, the generator of dilatation is D = −ixµ∂µ. For bµν = Mµν(λ = 0).

x′µ = xµ +Mµ
νx

ν

= xµ +Mα
νδ

µ
αx

ν

= xµ +Mα
ν(∂αx

µ)xν

= xµ +Mαν(∂αxµ)xν

= xµ +
Mαν −Mνα

2
(∂αxµ)xν

= xµ +
1

2
Mαν(∂αxµ)xν − 1

2
Mνα(∂αxµ)xν

relabeling ν ↔ α

= xµ +
1

2
Mαν(∂αxµ)xν − 1

2
Mαν(∂νxµ)xα

= xµ +
1

2
Mαν(xν∂α − xα∂ν)xµ

= xµ +
i

2
Mαν {−i(xν∂α − xα∂ν)}xµ

= xµ +
i

2
Mαν{i(xα∂ν − xν∂α)︸ ︷︷ ︸

Lαν

}xµ

Thus, the generator of rotation is Lµν = i(xµ∂ν − xν∂µ). Now, the last part ϵµ = cµναx
νxα = cµανx

νxα, we
refer to (7.10):

∂α∂µϵν =
1

d
[gµν∂α + gνα∂µ − gαµ∂ν ](∂ · ϵ)

∂α∂µ(cνσβx
σxβ) =

1

d
[gµν∂α + gνα∂µ − gαµ∂ν ]∂µ(cµσβx

σxβ)

cνσβ∂α(δσµx
β + xσδβµ) =

1

d
[gµν∂α + gνα∂µ − gαµ∂ν ]cµσβ(gσµxβ + xσgβµ)

cνσβ(δσµδ
β
α + δσαδ

β
µ) =

1

d
[gµν∂α + gνα∂µ − gαµ∂ν ](cσσβx

β + cβσβx
σ)

2cνµα =
2

d
[gµν∂α + gνα∂µ − gαµ∂ν ]cσσβx

β

cνµα =
1

d
cσσβ
︸ ︷︷ ︸

bβ

[gµνδ
β
α + gναδ

β
µ − gαµδ

β
ν ]

= gνµbα + gναbµ − gµαbν

Therefore,

ϵµ = cµαβx
αβ

= (gµαbβ + gµβbα − gαβbµ)xαxβ

= xµ(b · x) + xµ(b · x) − bµ(x · x)

= 2xµ(b · x) − x2bµ

Hence, the Special Conformal Transformation looks like:

x′µ = xµ + 2xµ(b · x) − x2bµ

= xµ + 2(b · x)xνδµν − x2bνδµν

= xµ + 2(b · x)xν∂νx
µ − x2bν∂νx

µ
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= [1 + 2(b · x)xν∂ν − x2bν∂ν ]xµ

= [1 + {2bαxαx
ν∂ν − x2bα∂α}]xµ

= [1 + ibα{−i(2xαxν∂ν − x2∂α)︸ ︷︷ ︸
Kα

}]xµ

Hence, the generator for Spatial Conformal Transformations (SCT) takes the form Kµ = −i(2xµx · ∂ − x2∂µ).
We will now list all the infinitesimal transformations and their generators we found in this section.

1. Translation

x′µ = xµ + aµ Pµ = −i∂µ

2. Rotation

x′µ = xµ +Mµ
νx

ν Lµν = i(xµ∂ν − xν∂µ)

3. Dilatation

x′µ = (1 + λ)xµ D = −ixµ∂µ

4. Special Conformal Transformation

x′µ = xµ + 2xµ(b · x) − x2bµ Kµ = −i(2xµx · ∂ − x2∂µ)

In the above listed transfomations, the parameters aµ,Mµ
ν , λ and bµ are all infinitesimal.

Finite Conformal Transformation

In the previous section, we considered the infinitesimal conformal transformation, however in this section we
will consider the finite conformal transformation.

1. Translation

x′µ = xµ + aµ = eia
νPνxµ

finite vector

2. Dilatation

x′µ =

(
1 +

λ

N

)
xµ

In order to achieve the finite dilatation, we use the infinitesimal transformation recursively by dividing
the finite λ into infinitely many λ/N pieces and then transforming

x′µ =

(
1 +

λ′′

N

)(
1 +

λ′

N

)(
1 +

λ

N

)
xµ

︸ ︷︷ ︸
x′′µ

= lim
N→∞

(
1 +

λ

N

)N

xµ

= eλxµ = eiλDxµ

3. Rotation

x′µ =

[
1 +

i

2
ωαβL

αβ

]µ

ν

xν

=
[
e

i
2ωαβL

αβ
]µ

ν
xν = Λµ

νx
ν

4. The special conformal transformation

x′µ = xµ + 2xµ(b · x) − x2bµ

let bµ = t eµ

infinitesimal parameter.

x′µ(t) ≡ xµ(t) = xµ + 2t(e · x)xµ − x2teµ
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To find the finite form of the transformation we have to recursively apply the above equation multiple
times (Lie Algebra sence). The usual way is to integrate the infinitesimal form. The other way, and since
we know that the transformations satisfy the conformal Killing equation, is to find the integral curve
of the corresponding conformal Killing vector field as they are equivalent (Differential Geometry sense).
Consider the t−derivative of the above2.

dxµ(t)

dt
= 2(e · x)xµ − x2eµ (7.11)

defining yµ(t) = xµ(t)
x2(t)

ẏµ(t) =
x2ẋµ − 2(ẋ · x)xµ

(x2)2

quotient rule

=
x2[2(e · x)xµ − x2eµ] − 2[2(e · x)xν − x2eν ]xνx

µ

x4

=
x2[2(e · x)xµ − x2eµ] − 2[2(e · x)x2 − x2(e · x)]xµ

x4

=
x2[�����2(e · x)xµ − x2eµ] −������

2(e · x)x2xµ

x4

ẏµ(t) = −eµ

Solving the above differential equation

yµ(t) = yµ(0) − teµ

xµ(t)

x2(t)
=
xµ(0)

x2(0)
− teµ

going back to the old notation x′µ ≡ xµ(t)

x′µ

x′2
=
xµ

x2
− teµ

=
xµ

x2
− bµ (7.12)

Squaring both sides

(
x′µ

x′2

)2

≡ x′µ

x′2
x′µ
x′2

=

(
xµ

x2
− bµ

)2

x′2

x′4
=

(
xµ

x2

)2

+ b2 − 2(x · b)
x2

1

x′2
=

1 + b2x2 − 2(x · b)
x2

x′2 =
x2

1 − 2(x · b) + b2x2
(7.13)

referring to (7.12)

x′µ = x′2
[
xµ

x2
− bµ

]

and substituting (7.13)

x′µ =
x2

1 − 2(x · b) + b2x2

[
xµ

x2
− bµ

]

=
xµ − bµx2

1 − 2(x · b) + b2x2

Above procedure also suggests that, finite SCT could be described as a sequence of inversion→translation→inversion.
Where inversion is defined as:

I(xµ) =
xµ

x2
2when we consider the differential equation, we are no longer thinking of it as transformation but rather flow along a trajectory

parameterized by t. This part was taken from pg 16 of [19]

76



Jacobian of the Transformation

Translation:

∣∣∣∣
∂xµ

∂x̃ν

∣∣∣∣ = 1

Rotation:

∣∣∣∣
∂xµ

∂x̃ν

∣∣∣∣ = 1

Dilataion:

∣∣∣∣
∂xµ

∂x̃ν

∣∣∣∣ = λ−D

Inversion:

∣∣∣∣
∂xµ

∂x̃ν

∣∣∣∣ =

(
1

x̃2

)D

How distances transform

Under translation

x′µ = xµ + aµ

So,

x′µa − x′µb = xµa + aµ − xµb − aµ

= xµa − xµb

Thus, the distances are invariant under translation:

|x′a − x′b| = |xµa − xµb |

Under dilatation

x′µ = (1 + λ)xµ

So,

x′µa − x′µb = (1 + λ)xµa − (1 + λ)xµb
= (1 + λ)(xµa − xµb )

We find that the distances between two point scales under dilatation, therefore the natural quantity which is
invariant under both translation and dilatation is

∣∣x′µa − x′µb
∣∣

∣∣x′µc − x′µd
∣∣ =

���1 + λ

���1 + λ

|xµa − xµb |
|xµc − xµd |

=
|xµa − xµb |
|xµc − xµd |

Under special conformal transformation

x′µ =
xµ − bµx2

1 − 2(x · b) + b2x2

=
xµ − bµx2

Λ2(x)

So,

x′µa =
xµa − bµx2a

Λ2(xa)

x′µb =
xµb − bµx2b

Λ2(xb)

and,

x′µa − x′µb =
xµa − bµx2a

Λ2(xa)
− xµb − bµx2b

Λ2(xb)
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squaring both sides

(x′µa − x′µb )2 =

(
xµa − bµx2a

Λ2(xa)
− xµb − bµx2b

Λ2(xb)

)2

=
x2a + b2(x2a)2 − 2x2a(xa · b)

Λ4(xa)
+
x2b + b2(x2b)2 − 2x2b(xb · b)

Λ4(xb)

− 2

Λ2(xa)Λ2(xb)

[
xa · xb − x2b(xa · b) − x2a(b · xb) + b2x2ax

2
b

]

= x2a

[
1 − 2(xa · b)

Λ4(xa)
+

1−Λ2(xb)︷ ︸︸ ︷
2(b · xb) − b2x2b
Λ2(xa)Λ2(xb)

]
+ x2b

[
1 − 2(xb · b)

Λ4(xb)
+

1−Λ2(xa)︷ ︸︸ ︷
2(b · xa) − b2x2a
Λ2(xa)Λ2(xb)

]

+
b2(x2a)2

Λ4(xa)
+
b2(x2b)2

Λ4(xb)
− 2xa · xb

Λ2(xa)Λ2(xb)

= x2a

[
1 − 2(xa · b) − Λ2(xa)

Λ4(xa)
+

1

Λ2(xa)Λ2(xb)

]
+ x2b

[
1 − 2(xb · b) − Λ2(xb)

Λ4(xb)

+
1

Λ2(xb)Λ2(xb)

]
+
b2(x2a)2

Λ4(xa)
+
b2(x2b)2

Λ4(xb)
− 2xa · xb

Λ2(xa)Λ2(xb)

= x2a

[
−b2x2a
Λ4(xa)

+
1

Λ2(xa)Λ2(xb)

]
+ x2b

[
−b2x2b
Λ4(xb)

+
1

Λ2(xb)Λ2(xb)

]

+
b2(x2a)2

Λ4(xa)
+
b2(x2b)2

Λ4(xb)
− 2xa · xb

Λ2(xa)Λ2(xb)

=
(xa − xb)

2

Λ2(xa)Λ2(xb)

Thus, we find that the ratio of distances are not invariant under SCT.

∣∣x′µa − x′µb
∣∣

|xa − xb|
=

1

Λ(xa)Λ(xb)

where Λ(xa) =
√

1 − 2(xa · b) + b2x2a We can however, construct another quantity which is invariant under
SCT.

|x′a − x′b|
|x′b − x′d|

|x′d − x′c|
|x′c − x′a|

=

|xa−xb|
Λ(xa)Λ(xb)

|xb−xd|
Λ(xb)Λ(xd)

|xd−xc|
Λ(xd)Λ(xc)

|xc−xa|
Λ(xc)Λ(xa)

=
|xa − xb|
|xb − xd|

|xd − xc|
|xc − xa|

Such expressions are called, anharmonic ratios or cross-ratios.

Lie Algebra of Generators

[Pµ, Pν ] = [−i∂µ,−i∂ν ]

= −[∂µ, ∂ν ] = 0

Some useful identities

[xα, ∂β ]f = xα∂βf − ∂β(xαf)︸ ︷︷ ︸
(∂βxα)f+xα∂βf

= xα∂βf − xα∂βf − (∂βxα)f

= −(∂βxα)f

[xα, ∂β ] = −∂βxα = −g
βα
∂µxα

= g
βα

(7.14)
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next is,

[x2, ∂β ] = [xαxα, ∂β ]

= xα[xα, ∂β ] + [xα, ∂β ]xα

= −xαg
βα

− δαβxα

= −xβ − xβ

= −2xβ (7.15)

and the last one is,

[xµx
ν , ∂β ] = xµ[xν , ∂β ] + [xµ, ∂β ]xν

= −xνδνβ − xνg
βα

(7.16)

We will now consider, the lie algebra of different operators one by one.

[Pµ, D] = [−i∂µ,−ixα∂α]

= −[∂µ, x
α∂α]

= −xα[∂µ, ∂α] − [∂µ, x
α]∂α

= −δαµ∂α = −∂µ = −i(−i∂µ)

= −iPµ

[Pµ, Lαβ ] = [−i∂µ,−i(xα∂β − xβ∂α)]

= −[∂µ, xα∂β − xβ∂α]

= −[∂µ, xα]∂β + [∂µ, xβ ]∂α

= gαµ∂β − g
βµ
∂α

= i(gαµPβ − g
βµ
Pα)

[Pµ,Kν ] = [−i∂µ,−i(2xµxα∂α − x2∂ν)]

= −[∂µ, 2xνx
α∂α − x2∂ν ]

= −2xνx
α[∂µ, ∂α] − 2[∂µ, xνx

α]∂α + x2[∂µ, ∂ν ] + [∂µ, x
2]∂ν

= −2[∂µ, xνx
α]∂α + [∂µ, x

2]∂ν

= −2(gµνx
α + δαµxν)∂α + 2xµ∂ν

= −2gµνx
α∂α − 2(xν∂µ − xµ∂ν)

= −2igµνD − 2iLµν

= −2i(gµνD − Lµν)

[D,Kµ] = −[xα∂α, 2xµx
α∂α − x2∂µ]

= −2[xα∂α, xµx
β∂β ] + [xα∂α, x

2∂µ]

= −2
{
xα[∂α, xµx

β ]∂β + xµx
β [xα, ∂β ]∂α

}

+ xα[∂α, x
2]∂µ + x2[xα, ∂µ]∂α

= −2
{
xα
(
gαµx

β + δβαxµ
)
∂β + xµx

β(−δαβ )∂α
}

+ 2x2∂µ −�����xαx2∂α∂µ +�����x2xα∂α∂µ − x2∂µ

= −����
2xµx

β∂β − 2xβxµ∂β +����
2xµx

β∂β + x2∂µ

= −(2xβxµ∂β − x2∂µ)

= −iKµ

[Kµ, Lαβ ] = [−i(2xµxν∂ν − x2∂µ), i(xα∂β − xβ∂α)]

= [2xµx
ν∂ν − x2∂µ, xα∂β − xβ∂α]

= 2[xµx
ν∂ν , xα∂β ] − [x2∂µ, xα∂β ] + 2[xµx

ν∂ν , xβ∂α] − [x2∂µ, xβ∂α]︸ ︷︷ ︸
α↔β
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= 2 {xµxν [∂ν , xα]∂β + xα[xµx
ν , ∂β ]∂ν} − x2[∂µ, xα]∂β − xα[x2, ∂β ]∂µ − (α↔ β)

=(((((((
2xµx

ν(gνα)∂β − 2xα
(
gµβx

ν +���δνβxµ
)
∂ν − x2gµα∂β + 2xαxβ∂µ − (α↔ β)

= −2xαgµβx
ν∂ν − x2gµα∂β +�����2xαxβ∂µ + 2xβgµαx

ν∂ν + x2gµβ∂α −�����2xβxα∂µ

= −2xαgµβx
ν∂ν − x2gµα∂β + 2xβgµαx

ν∂ν + x2gµβ∂α

= −gµβ(2xαx
ν∂ν − x2∂α) + gµα(2xβx

ν∂ν − x2∂β)

= igµαKβ − igµβKα = i(gµαKβ − gµβKα)

[Kµ,Kν ] = −[2xµx
α∂α − x2∂µ, 2xνx

β∂β − x2∂ν ]

= −4[xµx
α∂α, xνx

β∂β ] + 2[xµx
α∂α, x

2∂ν ] + 2[x2∂µ, xνx
β∂β ] − [x2∂µ, x

2∂ν ]

= −4xνx
β [xµx

α, ∂β ] ∂α − 4xµx
α
[
∂α, xνx

β
]
∂β + 2xµx

α
[
∂α, x

2
]
∂ν + 2x2 [xµx

α, ∂ν ] ∂α

+ 2x2
[
∂µ, xνx

β
]
∂β + 2xνx

β
[
x2, ∂β

]
∂µ − x2[∂µ, x

2]∂ν − x2[x2, ∂ν ]∂µ

=
(((((((((((
4xνx

β(gµβx
α + δαβxµ)∂α −

(((((((((((
4xµx

α(gανx
β + δβαxν)∂β + 4xµx

2∂ν − 2x2(���gµνx
α + δαν xµ)∂α

+ 2x2(���gµνx
β + δβµxν)∂β − 4xνx

2∂µ − 2x2xµ∂ν + 2x2xν∂µ

=(((((((((
4xµx

2∂ν − 2xµx
2∂ν +(((((((((

2xνx
2∂µ − 4xνx

2∂µ −����
2x2xµ∂ν +����

2x2xν∂µ

= 0

Next, we will see that Conformal Algebra in d dimensions is isomorphic to the Lie algebra of the Lorentz group
in d + 2 dimensions, any conformal covariant correlator in d dimensions should be obtainable from Lorentz
covariant expressions in d+ 2 dimensions via some kind of dimensional reduction procedure. This is essentially
the idea behind Embedding Formalism. We define the following set of new operators:

Jµν = Lµν

J0,µ =
1

2
(Pµ +Kµ)

J−1,µ =
1

2
(Pµ −Kµ)

J−1,0 = D

with the property that
Jab = −Jba

where
a, b ∈ {−1, 0, 1, · · · , d }

d is dimension of spacetime

These new generators, obey SO(d+ 1, 1) lie algebra:

[Jab, Jcd] = i (ηadJbc − ηacJbd − ηbdJac + ηbcJad) (7.17)

In this section, we will explicitly assume the form of flat metric as being euclidean, and given as:

gµν = ηµν = (1, 1, · · · , 1︸ ︷︷ ︸
d

)

Our metric in (7.17) would be given as:

ηab = ( − 1 , 1 , 1, · · · , 1︸ ︷︷ ︸
µ,ν

)

η00 = 1

η−1−1 = −1

(7.18)

If our original metric was Minkowski, we would have had:

ηab = (−1, 1,−1, · · · , 1︸ ︷︷ ︸
d

)

We will now check, if (7.17) holds true:

[Jµν , J0,α] =

[
Lµν ,

1

2
(Pα +Kα)

]
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=
1

2
[Lµν , Pα] +

1

2
[Lµν ,Kα]

= −1

2
[Pα, Lµν ] − 1

2
[Kα, Lµν ]

= −1

2
(ηαµPµ − ηανPµ) − 1

2
(ηαµKν − ηανKν)

= −ηαµ
[

1

2
(Pν +Kν)

]
+ ηα,ν

[
1

2
(Pµ +Kµ)

]

= −iηαµJ0,ν + iηανJ0,µ

[J0,µ, J−1,0] =

[
1

2
(Pµ +Kµ), D

]

=
1

2
[Pµ, D] +

1

2
[Kµ, D]

= −1

2
iPµ − 1

2
(−iKµ) =

−i
2

(Pµ −Kµ) = −iJ−1,µ

If we assume that the metric in (7.17) is indeed given by (7.18). Then, the algebra (7.17) holds true. This shows
the isomorphism between the conformal group in d−dimensions and the group SO(d+1, 1) with 1/2(d+1)(d+2)
parameters.

Conformal Generators on the Field

Finite form of conformal transformation (x′ = Λx)3

Φ′
a(x′) = U(Λ)Φa(x)U−1(Λ)

Φ′
a(Λx) =

∑

b

πab(Λ)Φb(x)

= πab(Λ)Φb(Λ
−1x′)

= πab(e
iωgcg )Φb(e

−iωgcgx′) (7.19)

We have dropped the
∑

sign and summation over repeated indices are implied. Infinitesimal form of (7.19):

Φ′
a(x′) = (1 − iωg Tg )abΦb(Λ

−1x′)

generator only acting on field

= (1 − iωgTg)ab Φb[(1 − iωg cg )x′µ]
︸ ︷︷ ︸

Φb(x
′)+{(1−iωgcg)x

′µ−x′µ}∂µΦb(x
′)

generator which only acts on x′µ

= (1 − iωgTg)ab[Φb(x
′) − iωgcgx

′µ∂µΦb(x
′)]

Φ′(x′) = Φ(x′) − iωg

[
Tg + cgx

′µ ∂

∂x′µ

]
Φ(x′) + O(ω2

g)

accounts for the change in argument of field

However, we will not use this approach but rather we will consider the transformations at origin and then
translate it to every other point (method of induced representation). This approach is based on studying the
stabilizer subgroup of the Conformal Symmetry.4 So, if we study the same at origin:

Φ′(0) = Φ(x′) − iωg

[
Tg + cgx

′µ ∂

∂x′µ

]
Φ(x′)

∣∣∣∣∣
x′=0

= Φ(0) − iωgTgΦ(0)

using translation operator

eix
λPλΦ′(0)e−ixαPα = eix

λPλΦ(0)e−ixαPα − eix
λPλiωgTgΦ(0)e−ixαPα

Φ′(x) = Φ(x) − eix
λPλiωgTge

−ixσPσeix
βPβΦ(0)e−ixαPα

= Φ(x) − iωg e
ixλPλTge

−ixσPσ

︸ ︷︷ ︸
we will find these “translated operators” later

Φ(x)

3tobias osborne’s lecture notes pg 18
4pg 7 of “The Conformal Bootstrap: Theory, Numerical Techniques, and Applications”
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For translation

Φ′(x+ a) = eia
λPλΦ(x)e−iaαPα

= eia
λ[Pλ, ]Φ(x)

using (7.21)

= ea·∂Φ(x)

For rotation, at x′µ = 0. =⇒ xµ = 0

Φ′
a(0) = πab(Λ)Φb(Λ

−10) = πab(Λ)Φb(0)

Now, assuming the generator of rotation Tg = Lµν acts like5

LµνΦa(0) = SµνΦa(0) (7.20)

at origin. At any other point, it will behave as:

LµνΦa(x) = eix
βPβLµνΦa(0)e−ixαPα

= eix
βPβLµνe

−ixσPσ

︸ ︷︷ ︸
?

eix
λPλΦa(0)e−ixαPα

︸ ︷︷ ︸
Φa(x)

by taking the derivative of second term, we obtain the following commutator

Φa(x) = eix
λPλΦa(0)e−ixαPα

∂µΦa(x) = (∂µe
ixλPλ)Φa(0)e−ixαPα + eix

λPλΦa(0)(∂µe
−ixαPα)

= iPµeix
λPλΦa(0)e−ixαPα + eix

λPλΦa(0)e−ixαPα(−iPµ)

= iPµΦa(x) − iΦa(x)Pµ

= i[Pµ,Φa(x)] (7.21)

We will now derive the form of eix
βPβLµνe

−ixσPσ6:

eix
βPβLµνe

−ixσPσ = Lµν + [Lµν ,−ixαPα] +
1

2!
[[Lµν ,−ixαPα],−ixαPα] + . . .

= Lµν + ixα [Pα, Lµν ]︸ ︷︷ ︸
i(gαµPν−gανPµ)

+ . . .

= Lµν + i2xα(gαµPν − gανuPµ)

= Lµν − xµPν + xνPµ

= Lµν + i(xµ∂ν − xν∂µ)︸ ︷︷ ︸
we found in section 7

we know, at x′ = 0 we have Lµν = Sµν , so for the sake of consistency we get

eix
βPβLµνe

−ixσPσ = Sµν + i(xµ∂ν − xν∂µ)
Spin Operator transforms the argument of field

The exponential map of above can be found in any textbook on QFT which describes rotation or Lorentz
transformation.7 If we ignore Sµν , then we can see how the last part acts on field:

x′µ =

(
δµν +

i

2
ωαβL

αβ

)
xµ

= xµ +
i

2
ωαβi

(
xα∂β − xβ∂α

)
xν

Φ′(x) = Φ(x) − i

2
ωαβL

αβΦ(x)

5pg 10, paragraph 2 of [20]
6using BCH lemma eABe−A = e[A, ]B
7check eqn 1.141 and 1.150 of [4]
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= Φ(x) − i

2
ωαβi(x

α∂β − xβ∂α)Φ(x)

= Φ(x) +
1

2
ωαβ(xαgβσ∂σ − xβgασ∂σ)Φ(x)

= Φ(x) +
1

2
ωαβ(xα∂β − xβ∂α)xσ∂σΦ(x)

= Φ(x) − i

2
ωαβL

αβx · ∂Φ(x)

≈ Φ

(
xµ − i

2
ωαβL

αβxν
)

Φ′(x′) = Φ(x)

For dilatation, at x′µ = 0, x′µ = (1 + λ)xµ = 0 =⇒ xµ = 0. We have ωg = λ and Tg = D:

DΦa(0) = ∆̃Φa(0) (7.22)

corresponding commutator (by operating it on eigenstate of dilatation)

D |∆⟩ = [D,Φ∆(0)] |0⟩ + Φ∆(0)D |0⟩
∆̃ |∆⟩ = [D,Φ∆(0)] |0⟩ + 0

∆̃Φ∆(0) |0⟩ = [D,Φ∆(0)] |0⟩

Applying the same procedure, we consider:

eix
βPβDe−ixσPσ = D + [D,−ixβPβ ] +

1

2!
[[D,−ixβPβ ],−ixβPβ ] + . . .

= D − ixα(iPα)

= D + xαPα (7.23)

= D − ixα∂α

for the sake of consistency at x′ = 0

= ∆̃ − ixα∂α

Now, we consider

DΦa(x) = (∆̃ − ixα∂α)Φa(x)

redefining ∆̃ ≡ −i∆, we get
DΦa(x) = −i(∆ + xα∂α)Φa(x)

Similarly,8

[D,Φa(x)] = Deix
βPβΦa(0)e−ixσPσ − eix

βPβΦa(0)e−ixσPσD

= eix
λPλ eix

αPαDe−ixβPβ︸ ︷︷ ︸
=D+xαPα

Φa(0)e−ixσPσ − eix
βPβΦa(0) e−ixσPσDe−ixαPα︸ ︷︷ ︸

=D+xαPα

e−ixλPλ

= eix
βPβ [D + xαPα,Φa(0)]e−ixσPσ

= eix
βPβ [D,Φa(0)]︸ ︷︷ ︸

∆̃Φa(0)

e−ixσPσ + eix
βPβ [xαPα,Φa(0)]︸ ︷︷ ︸

=xα[Pα,Φa(0)]

e−ixσPσ

= ∆̃Φa(x) − ix · ∂Φa(x)

= −i(∆ + x · ∂)Φa(x)

Finite Dilatation9, we consider

x′ = eλx = eiλDx =

(
1 + i

λ

N
D

)
. . .

(
1 + i

λ

N
D

)
x

Dxµ = −ix · ∂xµ

8from pg 31 of [21], and x is not an operator here but a number
9look up Lectures Notes For An Introduction to Conformal Field Theory A Course Given By Dr. Tobias Osborne, pg 19
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then at origin, the field transforms (active transformation) as:

Φ′
a(0) =

(
1 + i

λ

N
D

)
. . .

(
1 + i

λ

N
D

)
Φa(0)

=

(
1 + i

λ

N
∆̃a

)
. . .

(
1 + i

λ

N
∆̃a

)
Φa(0) (using DΦ(0) = ∆̃Φ)

= eiλ∆̃aΦa(0)

= e−λ∆aΦa(0)

In passive transformation

Φ′
a(0) =

(
1 − i

λ

N
∆̃a

)
. . .

(
1 − i

λ

N
∆̃a

)
Φa(0)

= e−iλ∆̃aΦa(0)

= eλ∆Φa(0)

For arbitrary point (ignoring the change in argument of field and thus generator cg):

Φ′
a(x′) = πab(e

iλD)Φb(x)

= [eiλ∆̃]abΦb(x)

Φ′
a(eλx) = [e−λ∆]abΦb(x) = e−λ∆Φa(x)

For SCT, x′µ = 0 =⇒ xµ = 0. Hence, we will consider the same equations, but in this context:

KµΦa(0) = κµΦa(0)

Again, applying the same procedure,

eix
βPβKµe

−ixσPσ = Kµ + [Kµ,−ixβPβ ] +
1

2!
[[Kµ,−ixβPβ ],−ixβPβ ] + . . .

= Kµ − ixβ [Kµ, Pβ ] +
1

2
[−ixβ [Kµ, Pβ ],−ixβPβ ] + . . .

= Kµ + 2xβ(gµβD − Lµβ) +
1

2
[2xβ(gµβD − Lµβ),−ixαPα]

= Kµ + 2xµD − 2xβLµβ − ixµx
α[D,Pα] + ixβxα [Lµβ , Pα]︸ ︷︷ ︸

−i(gαµPβ−gαβPµ)

= Kµ + 2xµD − 2xβLµβ + xµx
αPα + xµx

βPβ − xαx
αPµ

= Kµ + 2xµD − 2xβLµβ + 2xµx
αPα − xαx

αPµ

From the generator of dilatation and SCT, we have

[D,Kµ] = −iKµ at x′µ = 0 =⇒ [∆̃, κµ] = −iκµ

and

[D,Lµν ] = 0 at x′µ = 0 =⇒ [∆̃, Sµν ] = 0

For primary fields:
KµΦa(0) = 0

Since, for primary field ∆̃ commutes with all other operators which belong to the stability subgroup. By Schur’s
lemma ∆̃ ∝ I, where I is an identity operator. The SCT and momentum generator acts as ladder operator for
Dilatation.

[D, [Pµ,Φ(0)]] = [Pµ, [D,Φ(0)]] + [[D,Pµ],Φ(0)] = −i(∆ + 1)[Pµ,Φ(0)]

[D, [Kµ,Φ(0)]] = [Kµ, [D,Φ(0)]] + [[D,Kµ],Φ(0)] = −i(∆ − 1)[Kµ,Φ(0)]
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Finite Conformal Transformation of Fields

We begin by noting that translation and rotation do not introduce any new thing that we hadn’t encountered
in QFT, it is only the dilatation and SCT which does. Upon exponentiating the infinitesimal dilatation:

Φ′(x′) = e−iωg[Tg+cgx
′µ ∂

∂x′µ ]Φ(x′)

= e−iωgTge−iωgcgx
′· ∂

∂x′ Φ(x′)

= e−iωgTgΦ(e−iωgcgx′)

The source of confusion here is that we have defined our generator in such a way that it also includes the
translation. Due to this, we have x′ instead of x. If we break it down further, we see that it resembles the old
expression we find in other textbooks.

Φ′
a(x′) = U(Λ)Φa(x′)U−1(Λ) = e−iωgTgΦae

iωgTg

= e−iωg [Tg, ]Φa(x′)

For translation

Φ(x) = eix
λPλΦ(0)e−ixαPα = ex∂Φ(0)

Or,

Φ′(x′) = Φ(x)

= Φ(x′ − a)

= e−a ∂
∂x′ Φ(x′)

= e−iaP Φ(x′)

For dilatation (x′ = eλx)

Φ′
a(x′) = e−iλDΦa(x′)

= e−λ(∆+x′·∂)Φa(x′)

= e−λ∆ e−λx·∂Φa(x′)︸ ︷︷ ︸
Φa[e−λx′]

= e−λ∆Φa(x)

The last part could be understood as:

Φa

[(
1 − λ

N

)
x

]
= e−

λ
N x·∂Φa(x)

Φa

[(
1 − λ

N

)
. . .

(
1 − λ

N

)

︸ ︷︷ ︸
N terms

x

]
= e−

λ
N x·∂Φa

[(
1 − λ

N

)
. . .

(
1 − λ

N

)

︸ ︷︷ ︸
N−1 terms

x

]

Φa(e−λx) = e−λx·∂Φa(x)

or, alternatively

e−λx·∂Φa(x) =

(
1 − λ

N
x · ∂

)N

Φa(x)

=

(
1 − λ

N
x · ∂

)
. . .

(
1 − λ

N
x · ∂

)
Φa(x)

︸ ︷︷ ︸
Φa[(1− λ

N )x]

= Φa

[(
1 − λ

N

)N

x

]

= Φa(e−λx)

For SCT (on primary fields)

Φ′(x′) = e−i⃗b·K⃗Φ(x)

= Φ(x)
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Appendix: Conformal Ward Identity

We will now derive the conformal ward identity, which are crucial for bootstrap philosophy as well as we used
it for deriving the Three Point Function involving conformally coupled scalar. The metric corresponding to de
Sitter spacetime in flat slicing is given by:

ds2 =
−dη2 + dx2

η2H2

The generator of dilatation looks like:
−iD = −x · ∂

The generator of SCT looks like:

−iKµ = −[2xµx · ∂ − x2∂µ]

= −2xµη∂η − 2xµx⃗ · ∂x⃗ − (η2 − |x⃗|2)∂µ

The infinitesimal special conformal transformation is given as:

x′µ = xµ + ibνKνx
µ

=⇒ bνKν︸ ︷︷ ︸
b·K

xµ = 0

Moving forward we will consider the SCT parametrized by bµ = (0,b), where b is any arbitrary constant
3-vector.10 Then, the infinitesimal conformal transformation which respects the de Sitter isometry will look
like

dilation: η → η(1 + λ), x → x(1 + λ),

SCT: η → η(1 − 2b · x), x → x− 2(b · x)x + (x2 − η2)b,

We consider the following quantity:

eiλD ⟨. . .⟩ = ⟨. . .⟩ =⇒ D ⟨. . .⟩ = 0

ei⃗b·K⃗ ⟨. . .⟩ = ⟨. . .⟩ =⇒ b⃗ · K⃗ ⟨. . .⟩ ≡ b ·K ⟨. . .⟩ = 0

Since, at late time (η → 0) we will be decomposing our fields like (refer (4.7)):

Φ =
∑

{∆}
η∆O∆(x⃗)

The generators act on the boundary operator O∆ like:

DΦ = −x · ∂Φ

= −x · ∂
∑

{∆}
η∆O∆

=
∑

{∆}
(−η∂η − x⃗∂x⃗)η∆O∆

=
∑

{∆}
η∆ (−∆ − x⃗∂x⃗)︸ ︷︷ ︸

D

O∆

= D
∑

{∆}
η∆O∆

10field theory in cosmology by Enrico Pajer pg 59
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b ·KΦ = bµ[−2xµη∂η − 2xµx⃗ · ∂x⃗ − (η2 − |x⃗|2)∂µ]Φ

= [−2(⃗b · x⃗)η∂η − 2(⃗b · x⃗)x⃗ · ∂x⃗ − (η2 − |x⃗|2)⃗b · ∂x⃗]Φ

=
∑

{∆}
[−2(⃗b · x⃗)∆ − 2(⃗b · x⃗)x⃗ · ∂x⃗ − (η2 − |x⃗|2)⃗b · ∂x⃗]︸ ︷︷ ︸

b·K

η∆O∆

in the limit η → 0

= [−2(⃗b · x⃗)∆ − 2(⃗b · x⃗)x⃗ · ∂x⃗ + |x⃗|2⃗b · ∂x⃗]Φ

In momentum space, the above operators take the following form:

D : (3 − η∂η) + ki∂ki
,

b ·K : (3 − η∂η) 2bi∂ki − b · k∂ki∂ki + 2ki∂kib
j∂kj .

or, simply

D : (3 − ∆) + ki∂ki
,

b ·K : (3 − ∆) 2bi∂ki
− b · k∂ki

∂ki
+ 2ki∂ki

bj∂kj
.

There are two ways to derive this expression, we will discuss both of them. The first is based on using Fourier
Transform:

f(x⃗) =

∫
d3xeix⃗·⃗kf(k⃗)

In our case

D

∫
d3keix⃗·⃗kO∆(k⃗)

︸ ︷︷ ︸
O∆(x⃗)

= −
(

∆ + xj
∂

∂xj

)∫
d3keix⃗·⃗kO∆(k⃗)

=

∫
d3k

[
−∆ − xj

∂

∂xj

]
eix⃗·⃗kO∆(k⃗)

=

∫
d3k[−∆eix⃗·⃗k − xjeix⃗·⃗k(ikj)]O∆(k⃗)

we have to get rid of xj , so we consider:

=

∫
d3k

[
−∆eix⃗·⃗k −

(
−i∂e

ix⃗·⃗k

∂kj

)
ikj

]
O∆(k⃗)

=

∫
d3k

[
−∆eix⃗·⃗k −

(
∂eix⃗·⃗k

∂kj

)
kj

]
O∆(k⃗)

integrating by parts the second term

=

∫
d3keix⃗·⃗k

[
−∆ +

(
∂

∂kj

)
kj

]
O∆(p⃗)

=

∫
d3keix⃗·⃗k


−∆ +

�
�
�7

3
∂kj
∂kj

+ kj
∂

∂kj


O∆(k)).

Thus the action of the dilatation generator in momentum space is

DO∆(k⃗) =

(
3 − ∆ + kj

∂

∂kj

)
O∆(k⃗)

The second way is to replace the following in the expression in coordinate space (it can be seen operating the
corresponding derivative operator on eix

µkµ and the corresponding integration by parts).

xµ → −i ∂

∂kµ

∂

∂xµ
→ −ikµ
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Substituting in

DO∆(x⃗) = −
(

∆ + xj
∂

∂xj

)
O∆(x⃗)

we get

DO∆(k⃗) = −
[
∆ − i

∂

∂kj
(
−ikj

)]
O∆(k⃗) = −

(
∆ − 3 − kj

∂

∂kj

)
O∆(k⃗)

Conformal Ward Identity in momentum space

We start by assuming that the generator of conformal transformation annihilates the correlation function.

D ⟨O1(x⃗1)O2(x⃗2) . . . On(x⃗n)⟩ = 0

eixn·PD ⟨O1(x⃗1)O2(x⃗2) . . . On(x⃗n)⟩ e−ixn·P = 0

eixn·PDe−ixn·P︸ ︷︷ ︸
D+x⃗n·∂x⃗n

eixn·P ⟨O1(x⃗1)O2(x⃗2) . . . On(x⃗n)⟩ e−ixn·P
︸ ︷︷ ︸

⟨O1(x⃗1−x⃗n)O2(x⃗2−x⃗n)...On(0)⟩

= 0

now, in Fourier space:

⟨O1(x⃗1 − x⃗n)O2(x⃗2 − x⃗n) . . . On(0)⟩ =

∫
ddk1 . . . d

dkne
∑n−1

j=1 ikj ·(xj−xn)+0

× δd




n∑

j

kj



〈
O1(k⃗1)O2(k⃗2) . . . On(k⃗n)

〉

=

∫
ddk1 . . . d

dkne
∑n−1

j=1 ikj ·xj−ixn·(
∑n−1

j=1 kj)

× δd


kn +

n−1∑

j

kj



〈
O1(k⃗1)O2(k⃗2) . . . On(k⃗n)

〉

≡
∫
ddk1 . . . d

dkne
∑n

j=1 ikj ·xj

× δd




n∑

j

kj



〈
O1(k⃗1)O2(k⃗2) . . . On(k⃗n)

〉

From first and third equality, we observe that the replacement we need to make are:

(xj − xn)µ → −i ∂

∂kµj
∂

∂xµ
→ −ikµ

Thus,

(D + x⃗n · ∂x⃗n︸ ︷︷ ︸
−(

∑n
j=1 ∆j+xj ·∂xj

)+xn∂xn

) ⟨O1(x⃗1 − x⃗n)O2(x⃗2 − x⃗n) . . . On(0)⟩ = 0

−




n∑

j

∆j +

n−1∑

j

(xj − xn) · ∂xj


 ⟨O1(x⃗1 − x⃗n)O2(x⃗2 − x⃗n) . . . On(0)⟩ = 0

−
[

n∑

j

∆j +

n−1∑

j

(
−i ∂

∂kµj

)
· (−ikµj )

︸ ︷︷ ︸
−[∆−(n−1)d−∑n−1

j=1 kj ·∂kj
]

]〈
O1(k⃗1)O2(k⃗2) . . . On(k⃗n)

〉
δd




n∑

j

kj


 = 0

The alternate way to do the same is by explicitly doing it. We then will have to use

∫
dxf(x)∂xδ(x− a) = −

∫
dx∂xf(x)δ(x− a) = −∂xf(a)
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Consider the following integral:

Iαβ =

∫
ddk

[
∂

∂xα
δd(kµ)

]
kβ

= −
∫
ddkδd(kµ)

∂kβ
∂xα

gαβ

= −gαβ (7.24)

However, we also know that:

∫
ddkδd(kµ) = 1

∫
ddkδd(kµ)

k2

k2
= 1

∫
ddkδd(kµ)

gαβkαkβ
k2

= 1

∫
ddk

δd(kµ)

k2
kαkβ =

1

d
gαβ (7.25)

from (7.24) and (7.25), we get

∂

∂kα
δd(kµ) = − d

k2
kαδ

d(kµ)

using the above, we derive:

kα
∂

∂kα
δ3(k⃗) = − 3

k2
kαkαδ

3(k⃗) = −3δ3(k⃗)

Then, we have:

−
n∑

j=1

(
∆j + xαj

∂

∂xαj

)
⟨O1(x⃗1)O2(x⃗2) . . . On(x⃗n)⟩

= −
3∑

j=1

(
∆j + xαj

∂

∂xαj

)

∫ n∏

l=1

ddklδ
d(
∑n

i=1 k⃗i)e
iklxl

〈
O1(k⃗1)O2(k⃗2) . . . On(k⃗n)

〉

= −
∫ n∏

l=1

ddklδ
d(
∑n

i=1 k⃗i)e
iklxl

(
n∑

j=1

∆j −
n∑

j=1

d

nd

−
n∑

j=1

kαj
∂

∂kαj

)〈
O1(k⃗1)O2(k⃗2) . . . On(k⃗n)

〉
+ δ′term

where

δ′term =

n∑

j=1

∫ n∏

l=1

ddkl

[
kαj

∂

∂kαj
δd(

∑n
i=1 k⃗i)

]
eikl·xl

〈
O1(k⃗1)O2(k⃗2) . . . On(k⃗n)

〉

defining P =
∑n

i=1 k⃗i

=

n∑

j=1

∫ n∏

l=1

ddkl

[
kαj

∂

∂Pα
δd(P )

]
eikl·xl

〈
O1(k⃗1)O2(k⃗2) . . . On(k⃗n)

〉

=

∫ n∏

l=1

ddkl

[
Pα ∂

∂Pα
δd(P )

]
eikl·xl

〈
O1(k⃗1)O2(k⃗2) . . . On(k⃗n)

〉

= −d
∫ n∏

l=1

ddklδ
d(
∑n

i=1 k⃗i)e
iklxl

〈
O1(k⃗1)O2(k⃗2) . . . On(k⃗n)

〉
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Thus, finally

−
n∑

j=1

(
xαj

∂

∂xαj
+ ∆j

)
⟨O1(x⃗1)O2(x⃗2) . . . On(x⃗n)⟩ = −

∫ n∏

l=1

ddklδ
d(
∑n

i=1 ki)e
iklxl




n∑

j=1

∆j − (n− 1)d−
n∑

j=1

kαj
∂

∂kαj



〈
O1(k⃗1)O2(k⃗2) . . . On(k⃗n)

〉
(7.26)

Before we proceed, there is another identity we’d like to derive which would be very helpful.

∂α∂βδ
d(kµ) = ∂α

[
− d

k2
δd(kµ)kβ

]

= −d
(

∂

∂kα
k−2

)
δd(kµ)kβ − d

k2
[∂αδ

d(k)]kβ − d

k2
δd(kµ)∂αkβ

=
d(d+ 2)

k4
δd(kµ)kαkβ − d

k2
δd(kµ)gαβ

We will now discuss the same for SCT. We perform the same substitution

−iK = −2xµ∆ − 2xµ x⃗ · ∂x⃗
−i ∂

∂kα (−ikα)

+|x⃗|2∂µ

= 2i∆
∂

∂kµ
− 2i

∂2

∂kµ∂kα
kα + i

∂2

∂kα∂kα
kµ

= 2i∆
∂

∂kµ
− 2i

∂

∂kµ

(
d+ kα

∂

∂kα

)

︸ ︷︷ ︸
2i
(
d ∂

∂kµ + ∂
∂kµ +kα ∂2

∂kµ∂kα

)
+ i

∂

∂kα

(
δαµ + kµ

∂

∂kα

)

︸ ︷︷ ︸
2i ∂

∂kµ +ikµ
∂2

∂kα∂kα

= 2i∆
∂

∂kµ
− 2id

∂

∂kµ
− 2ikα

∂2

∂kµ∂kα
+ ikµ

∂2

∂kα∂kα

= i

[
2(∆ − d)

∂

∂kµ
− 2kα

∂2

∂kµ∂kα
+ kµ

∂2

∂kα∂kα

]

Then,

Kµδd(
∑n

i=1 p
k
i ) =

n∑

j=1

[
kµj

∂2

∂kαj ∂kjα
− 2kαj

∂2

∂kαj ∂kjµ
+ 2(∆j − d)

∂

∂kjµ

]
δd(

∑n
i=1 k

µ
i )

Pµ =
∑n

i=1 k
µ
i

=

n∑

j=1

[
kµj

∂2

∂Pα∂Pα
− 2kαj

∂2

∂Pα∂Pµ
+ 2(∆j − d)

∂

∂Pµ

]
δd(P )

=






n∑

j=1

kµj


 ∂2

∂Pα∂Pα
− 2




n∑

j=1

kαj


 ∂2

∂Pα∂Pµ
+ 2

n∑

j=1

(∆j − d)
∂

∂Pµ


 δd(P )

=

[
Pµ ∂2

∂Pα∂Pα
− 2Pα ∂2

∂Pα∂Pµ
+ 2(∆ − nd)

∂

∂Pµ

]
δd(P )

=
2d

P 2
δd(P )Pµ − 2

d2 + d

P 2
δd(P )Pµ +

2d(∆ − nd)

P 2
δd(P )Pµ

= 2d [nd− d− ∆]
δd(P )Pµ

P 2

= −2[(n− 1)d− ∆]
∂δd(P )

∂Pµ

In the fourth line, we used
∑n

j=1 ∆j = ∆. Now, when K operates on the correlation function, it produces three
kinds of terms,

• All operators in K acting purely on ⟨O1(p1) . . . On(pn)⟩

• All operators in K acting purely on δd(
∑n

i=1 pi)
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• Operators acting on both ⟨O1(p1) . . . On(pn)⟩ and δd(
∑n

i=1 pi)

We will consider the action of

kµj
∂2

∂kαj ∂kjα
− 2kαj

∂2

∂kαj ∂kjµ

then, they will operate like:

2
∂δd(

∑n
i=1 k

µ
i )

∂kαj

[
kµj

∂

∂kjα
− kαj

∂

∂kjµ

]

︸ ︷︷ ︸
iLµα

〈
O1(k⃗1) . . . On(k⃗n)

〉

− 2
∂δd(

∑n
i=1 k

µ
i )

∂kµj
kαj

∂

∂kαj

〈
O1(k⃗1) . . . On(k⃗n)

〉

First part vanishes due to rotational invariance. Therefore the extra terms would be:

δ′terms = −2
∂δd(P )

∂P


(n− 1)d− ∆ +

n∑

j=1

kαj
∂

∂kαj



〈
O1(k⃗1) . . . On(k⃗n)

〉

The above vanishes from (7.26). Therefore the SCT ward identity is given as[22]:

Kµ⟨O1(k⃗1) . . . On(k⃗n)⟩

= −
[
2(∆ − d)

∂

∂kµ
− 2kα

∂2

∂kµ∂kα
+ kµ

∂2

∂kα∂kα

]
⟨O1(k⃗1) . . . On(k⃗n)⟩ (7.27)
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Appendix: Embedding Space
Formalism

Let us consider the following embedding space coordinates.

X0, X1, X2, . . . , Xd

︸ ︷︷ ︸
Xµ

, Xd+1

We define the following null coordinates,

XM = (X+, X−, Xµ),

where

X+ = X0 +Xd+1

X− = X0 −Xd+1

}
X0 =

X+ +X−

2
; Xd+1 =

X+ −X−

2

with the mostly plus metric in Rd+1,1, reads as

ds2 =

d∑

µ=1

(dXµ)2 − dX+dX−

with the metric given as:

η
MN

=




0 −1/2 0 0 · · ·
−1/2 0 0 0 · · ·

0 0 1 0 · · ·
...

... 0 1
. . .




Needless to say it is extremely simpler to construct Lorentz covariant expressions than conformal covariant
ones. Therefore the problem is: once we have constructed Lorentz covariant expressions in d + 2 dimensions
how do we descend to d dimensions without breaking the covariance? This can be done as follows:

We first note that null light cone X2 = 0 is Lorentz Invariant in embedding space. Therefore, we will
consider a null cone in the Minkowski space Rd+1,1, i.e. the space of null rays passing through origin defined
via:

X2 = −(X0)2 + (X1)2 + . . .+ (Xd+1)2

= −X+X− + (X1)2 + . . .+ (Xd)2︸ ︷︷ ︸∑d
µ=1(X

µ)2

= 0

We can use this constraint to remove one of the coordinates, say X− out of d+2 coordinates in embedding space.
Next, we will think of the embedding space as a fiber bundle over the d−dimensional base space (the physical
space where the CFT is defined). The fibers in this fiber bundle are the null lines in the (d+ 2)−dimensional
space that project down to points in the d−dimensional space. At each point in the base space, section (a map)
is defined, which is a specific choice of null vector from each fiber. Points in the original d−dimensional space
are represented by null vectors XA subject to the identification XA ∼ λXA for any non-zero λ. All null vectors
isomorphic to each other up to dilation belong to the same fiber. This has an important consequence: Lorentz
transformations map a point to another point outside the Euclidean section. To return to the Euclidean section,
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we need to use dilation, which is taken care of due to this identification. Therefore, in order to eliminate another
one of the coordinate, say X+, we consider an Euclidean section of the embedding space defined by:

X+ = f(Xµ) ≡ f(xµ)

This will help us identifying Xµ with the Euclidean space coordinates xµ.

Xµ ≡ xµ

This leads to definition of X− based on null condition as:

X− =

∑d
µ=1(Xµ)2

X+
=

x2

f(Xµ)

The spacetime interval on this section is given as:

ds2 = dx2 − dX+dX−
∣∣∣
X+=f(Xi),X−= x2

X+

This section satisfies two of the following conditions:

• section intersects each of the light rays at some point

• maps each point in d dimensional Euclidean space to a point on the null cone in Embedding space.

Let us now analyze how Lorentz Transformation acts on a generic section. The Lorentz transformation acting
as rotation on the point XA in the null-cone will move it to another point on the null cone outside the the
section XB = ΛB

AX
A.

Figure 7.1: The hypersurface perpendicular to X+ axis cutting at X+ = 1 is shown as a plane and the null
hypersurface is shown as the cone. The intersection of these two hypersurfaces describes the Euclidean Section.
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However, suppose via some conformal transformation (dilatation) in d dimensional Euclidean Space, we can
move XB to XC back into the section. In all these steps, the only thing that changes the metric is the rescaling
to get back into the section.

ds2B = dXMdXM

= d(λ(X)XM )d(λ(X)XM )

= [λdXM +XM (∇λ · dX)][λdXM +XM (∇λ · dX)]

= λ2dXMdXM + 2λ dXMXM︸ ︷︷ ︸
=0

(∇λ · dX) +XMXM︸ ︷︷ ︸
=0

(∇λ · dX)2

= λ2dXMdXM = λ2ds2C

where we used, X2 = 0 and XµdXµ = 0 for restricting it to null cone.
Assuming the three conditions we used for simplification applies, the Lorentz Transformation in d+2-dimensional
spacetime is equivalent to conformal transformation in d−dimensional spacetime if metric in d−dimensional
space is Euclidean thus, dX+ in ds2 has to vanish. It gives us the condition for defining the Euclidean section
as X+ = constant and thus, for the sake of simplicity, we take it as 1. Thus, we have two conditions which we
can use to eliminate two extra degree of freedom.

J
H
E
P
1
2
(
2
0
2
0
)
2
0
4

Figure 3. Illustration of the action of Lorentz transformations (and re-scalings) on points living
on the Euclidean section of the lightcone in embedding space.

symmetry in a simple way. Conformal transformations are complicated nonlinear trans-
formations and become particularly involved for spinning operators. At the same time, it
is easy to show that the conformal algebra on Rd is isomorphic to the algebra of Lorentz
transformations on R1,d+1. This suggests that a suitable embedding of Rd into R1,d+1,
should make conformal transformations as simple as Lorentz transformations. The em-
bedding space formalism of conformal field theory goes back to Dirac [66], and has found
many powerful applications in the recent CFT literature, e.g. [63, 64]. As we will see, the
formalism is particularly well-suited to describe fields with spin.

In this section, we provide a pedagogical review of CFTs in embedding space, based
mostly on the excellent treatment in [69]. Experts may skip directly to section 4, where
we apply this formalism to derive the weight-shifting operators of interest in cosmology.

3.1 Projective null cone

We begin by describing the embedding of d-dimensional Euclidean space as a slice through
a higher-dimensional lightcone. Consider d+ 2 dimensional Minkowski space, with coordi-
nates

XM , M = −1, 0, 1, . . . , d , (3.1)

where Lorentz transformations act as

XM → ΛMNX
N . (3.2)

The goal is to find an embedding of Rd into R1,d+1 on which these Lorentz transformations
become conformal transformations. We first restrict ourselves to points living on the null
cone in the embedding space:

X2 = 0 . (3.3)

This condition is Lorentz invariant and removes one of the coordinates in (3.1). To remove a
second coordinate and obtain a d-dimensional subspace, we define a section of the lightcone
X+ = f(Xi), where X± ≡ X0±X−1 are lightcone coordinates and the coordinates Xi are
identified with the coordinates xi on Rd.

We would like to understand how Lorentz transformations act on points living on the
section. In particular, we want to determine for which choice of embedding function f(Xi)

– 10 –

Figure 7.2: Upon Lorentz transformation, the points
get mapped to different section however by utilizing the
dilatation, we bring it back inside the original Euclidean
section.

In the embedding space formalism, choosing an
Euclidean section corresponds to picking a specific
way to embed the d−dimensional space in the (d +
2)−dimensional space. We define the following map
between d dimensional Euclidean Space with con-
formal symmetry to null cone in d + 2 dimensional
Minkowski space Rd+1,1

(X+, X−, Xµ) ≡
(
1, x2, xµ

)

Here, we note that choosing a constant value for X+

would give us a section on the cone on which the
induced metric is Euclidean.

Tensors in Embedding Space

In this section, we will only concern ourselves with
traceless and symmetric fields in Rd and leave the
anti-symmetric tensors for future. Consider a sym-
metric and traceless tensor OM1...MS

defined on the
cone X2 = 0 in Rd+1,1. Under the rescaling X → λX,
the tensor transforms as

OM1...MS
(λX) = λ−∆OM1...MS

(X)

i.e. it is a homogeneous function of degree ∆. We expect OM1...MS
to get mapped to traceless and symmetric

primary field in Rd. Since, each index go from 0 to d+ 1, in Rd+1,1 we find that, for d+ 2−dimensional fields
other than scalar have 2 more degree of freedom per index than d−dimensional fields. In order to remove the
extra degree of freedom, we consider the transversality condition.

XM1OM1...MS
= 0

We define the physical field to be:

ϕµνλ...(x) =
∂XM1

∂xµ
∂XM2

∂xν
∂XM3

∂xλ
. . . OM1...MS

(X)

∣∣∣∣∣
X=X(x)

Note that, this definition implies a redundancy. Indeed, anything proportional to XM gives zero since

X2 = 0 =⇒ XM
∂XM

∂xµ
= 0

Therefore, OM1...MS
(X) → OM1...MS

(X) + XM1
FM2...MS

(X) gets mapped to the same physical field. This
SO(d + 1, 1) tensor is sometimes referred to as pure gauge in the literature. It is this gauge redundancy that
reduces another degree of freedom per index by making it unphysical.
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